Zhen Yanzhong, Wang Jie, Fu Feng, Fu Wenhao, Liang Yucang
Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
Nanomaterials (Basel). 2019 Jul 23;9(7):1054. doi: 10.3390/nano9071054.
The novel ternary-component Ag/AgI/α-MoO (AAM) photocatalyst was successfully fabricated by a facile hydrothermal method combined with a charge-induced physical adsorption and photo-reduced deposition technique. X-ray diffraction, scanning/transmission electron microscope, X-ray photoelectron, UV-vis diffuse reflectance, photoluminescence and electrochemical impedance spectroscopy were employed to characterize the composition, morphology, light-harvesting properties and charge transfer character of the as-synthesized catalysts. The ternary-component AAM heterojunctions exhibited an excellent visible-light photocatalytic oxidative desulfurization activity, in which the AAM-35 (35 represents weight percent of AgI in AAM sample) possessed the highest photocatalytic activity of the conversion of 97.5% in 2 h. On the basis of band structure analysis, radical trapping experiments and electron spin resonance (ESR) spectra results, two different catalytic mechanisms were suggested to elucidate how the photogenerated electron-hole pairs can be effectively separated for the enhancement of photocatalytic performance for dual composites AM-35 and ternary composites AAM-35 during the photocatalytic oxidative desulfurization (PODS) of thiophene. This investigation demonstrates that Z-scheme Ag/AgI/α-MoO will be a promising candidate material for refractory sulfur aromatic pollutant's removal in fossil fuel.
通过简便的水热法结合电荷诱导物理吸附和光还原沉积技术,成功制备了新型三元组分Ag/AgI/α-MoO(AAM)光催化剂。采用X射线衍射、扫描/透射电子显微镜、X射线光电子能谱、紫外-可见漫反射光谱、光致发光光谱和电化学阻抗谱对合成的催化剂的组成、形貌、光捕获性能和电荷转移特性进行了表征。三元组分AAM异质结表现出优异的可见光光催化氧化脱硫活性,其中AAM-35(35表示AAM样品中AgI的重量百分比)在2小时内具有最高的光催化活性,转化率为97.5%。基于能带结构分析、自由基捕获实验和电子自旋共振(ESR)光谱结果,提出了两种不同的催化机制,以阐明在噻吩的光催化氧化脱硫(PODS)过程中,光生电子-空穴对如何能够有效分离,从而提高双组分复合材料AM-35和三元复合材料AAM-35的光催化性能。本研究表明,Z型Ag/AgI/α-MoO将是用于去除化石燃料中难熔硫芳烃污染物的一种有前途的候选材料。