Suppr超能文献

揭示钠离子电池磷/碳负极的界面不稳定性

Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries.

作者信息

Xiao Wei, Sun Qian, Banis Mohammad Norouzi, Wang Biqiong, Liang Jianneng, Lushington Andrew, Li Ruying, Li Xifei, Sham Tsun-Kong, Sun Xueliang

机构信息

Department of Mechanical & Materials Engineering , University of Western Ontario , London , Ontario N6A 5B9 , Canada.

Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30763-30773. doi: 10.1021/acsami.9b07884. Epub 2019 Aug 14.

Abstract

As a competitive anode material for sodium-ion batteries (SIBs), a commercially available red phosphorus, featured with a high theoretical capacity (2596 mA h g) and a suitable operating voltage plateau (0.1-0.6 V), has been confronted with a severe structural instability and a rapid capacity degradation upon large volumetric change. In particular, the fundamental determining factors for phosphorus anode materials are yet poorly understood, and their interfacial stability against ambient air has not been explored and clarified. Herein, a high-performance phosphorus/carbon anode material has been fabricated simply through ball-milling the carbon black and red phosphorus, delivering a high reversible capacity of 1070 mA h g at 400 mA g after 200 cycles and a superior rate capability of 479 mA h g at 3200 mA g. More importantly, we first reveal the significance of inhibiting the exposure of phosphorus/carbon electrode materials to air, even for a short period, for achieving a good electrochemical performance, which would sharply decrease the reversible capacities. With the assistance of synchrotron-based X-ray techniques, the formation and accumulation of insulating phosphate compounds can be spectroscopically identified, leading to the decay of electrochemical performance. At the same time, these passivation layers on the surface of electrode were found to occur via a self-oxidation process in ambient air. To maintain the electrochemical advantages of phosphorus anodes, it is necessary to inhibit their contact with air through a rational coating or an optimal storage condition. Additionally, the employment of a fluoroethylene carbonate (FEC) additive facilitates the decomposition of the electrolyte and favors the formation of a robust solid electrolyte interphase layer, which may suppress the side reactions between the active Na-P compounds and the electrolyte. These findings could help improve the surface protection and interfacial stability of phosphorus anodes for high-performance SIBs.

摘要

作为一种用于钠离子电池(SIBs)的有竞争力的负极材料,一种市售的红磷,具有高理论容量(2596 mA h g)和合适的工作电压平台(0.1 - 0.6 V),但在大体积变化时面临严重的结构不稳定性和快速的容量衰减。特别是,磷负极材料的基本决定因素仍知之甚少,其对环境空气的界面稳定性尚未得到探索和阐明。在此,通过简单地将炭黑和红磷球磨制备了一种高性能的磷/碳负极材料,在200次循环后,在400 mA g下具有1070 mA h g的高可逆容量,在3200 mA g下具有479 mA h g的优异倍率性能。更重要的是,我们首次揭示了即使短时间抑制磷/碳电极材料暴露于空气中对于实现良好电化学性能的重要性,这会急剧降低可逆容量。借助基于同步加速器的X射线技术,可以通过光谱鉴定绝缘磷酸盐化合物的形成和积累,从而导致电化学性能的衰减。同时,发现电极表面的这些钝化层是在环境空气中通过自氧化过程形成的。为了保持磷负极的电化学优势,有必要通过合理的涂层或最佳的储存条件来抑制它们与空气的接触。此外,使用氟代碳酸乙烯酯(FEC)添加剂促进了电解质的分解,并有利于形成坚固的固体电解质界面层,这可能抑制活性Na-P化合物与电解质之间的副反应。这些发现有助于改善用于高性能SIBs的磷负极的表面保护和界面稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验