CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India.
CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, Dr. K. S. Krishnan Marg, New Delhi 110012, India.
J Colloid Interface Sci. 2019 Oct 15;554:668-673. doi: 10.1016/j.jcis.2019.07.054. Epub 2019 Jul 21.
Methylammonium lead bromide (CHNHPbBr) colloidal quantum dots (QDs) exhibit strong green photoluminescence (PL) with high photoluminescence quantum yield (PLQY) making it valuable for various optoelectronic applications. Under the influence of polar gaseous molecules, hybrid halide perovskites show changes in its structural and electrical properties. We, for the first time, have investigated the influence of NH gas molecules on the optical properties of CHNHPbBr colloidal QDs. The investigations carried out under a controlled environment reveal that even the presence of 37 ppm of ammonia (NH) gas molecules causes a significant reduction in the PL intensity of CHNHPbBr colloidal QDs. The reduction rate of PL intensity can be tuned with the concentration of NH gas molecules. We propose that the decrease in PL intensity is because of the formation of a non-luminescent NHPbBr phase under the presence of NH gas molecules. Further, the non-luminescent NHPbBr retransformed into luminescent CHNHPbBr on the introduction of methylamine (CHNH) gas molecules. This reversible alternation in PL properties enables us to demonstrate its application for (NH) gas sensing. The advantage of using CHNHPbBr colloidal QDs for luminescence-based sensing is that its green emission is visible with the naked eye even under daylight, which is easy to detect.
甲基铵铅溴(CHNHPbBr)胶体量子点(QDs)具有很强的绿光荧光(PL),且荧光量子产率(PLQY)高,使其在各种光电应用中具有价值。在极性气态分子的影响下,混合卤化物钙钛矿显示出其结构和电性能的变化。我们首次研究了 NH 气体分子对 CHNHPbBr 胶体 QD 光学性质的影响。在受控环境下进行的研究表明,即使存在 37ppm 的氨(NH)气体分子,也会导致 CHNHPbBr 胶体 QD 的 PL 强度显著降低。PL 强度的降低率可以通过 NH 气体分子的浓度来调节。我们提出,由于在 NH 气体分子存在下形成了非发光的 NHPbBr 相,导致 PL 强度降低。此外,在引入甲胺(CHNH)气体分子后,非发光的 NHPbBr 重新转化为发光的 CHNHPbBr。这种 PL 性质的可逆变化使我们能够展示其在(NH)气体传感中的应用。使用 CHNHPbBr 胶体 QD 进行基于发光的传感的优点是,即使在日光下,其绿光发射也可以用肉眼看到,这便于检测。