Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Université de Toulouse, Laboratoire de Génie Chimique, LGC UMR CNRS 5503 ENSIACET INPT - 4 allée Emile Monso - BP 44362, 31432 Toulouse Cedex 4, France.
Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Université de Toulouse, Laboratoire de Génie Chimique, LGC UMR CNRS 5503 ENSIACET INPT - 4 allée Emile Monso - BP 44362, 31432 Toulouse Cedex 4, France.
Waste Manag. 2019 Jul 15;95:201-216. doi: 10.1016/j.wasman.2019.05.002. Epub 2019 Jun 13.
This paper presents a modelling framework for the deployment and design of aerospace CFRP (Carbon Fibre Reinforced Polymer) waste supply chain. The problem involves a multi-period Mixed Integer Linear Programming (MILP) formulation considering ε-constraint, lexicographic techniques and Multiple Criteria Decision Making (MCDM) tools. The methodology has been applied to a case study of France. In this model, the deployment of new recycling sites (Grinding, Pyrolysis, Supercritical Water, Microwave) is established. The system is optimised by bi-criteria optimisation including an economic objective based on cost minimisation or Net Present Value (NPV) maximisation and an environmental one (minimisation of Global Warming Potential). The potential for economic acceptability of recycled carbon fibres is assessed through a levelized cost derived from the supply chain total cost and the profitability via NPV with a range of various CFRP prices. The results show that the compromise strategy for both economic and environmental objectives leads to centralised configurations at the regions close to significant waste sources. The cooperation in the recovery system is needed to minimise cost and maximise profit. The improvement of recycling technology permits to achieve the compromise solution for both economic and environmental objectives. The results also highlight that a mix of technologies will be involved in deployment phase and that the answer is not straightforward due to the complexity of the system. The methodology is yet generic enough to be replicated in other contexts considering the upgrade of process database.
本文提出了一个用于航空航天 CFRP(碳纤维增强聚合物)废物供应链部署和设计的建模框架。该问题涉及多期混合整数线性规划(MILP)公式,考虑了 ε-约束、字典技术和多准则决策制定(MCDM)工具。该方法已应用于法国的案例研究。在该模型中,建立了新的回收站点(研磨、热解、超临界水、微波)的部署。该系统通过双标准优化,包括基于成本最小化或净现值(NPV)最大化的经济目标和环境目标(全球变暖潜力最小化)进行优化。通过供应链总成本和 NPV 得出的回收碳纤维的经济可行性的水平化成本,以及各种 CFRP 价格范围内的 NPV 评估了经济可行性。结果表明,经济和环境目标的妥协策略导致了靠近重要废物源的地区的集中配置。需要在回收系统中合作以最小化成本和最大化利润。回收技术的改进允许实现经济和环境目标的妥协解决方案。结果还强调,由于系统的复杂性,在部署阶段将涉及多种技术,并且答案并不简单。该方法足够通用,可以在考虑过程数据库升级的情况下在其他上下文中复制。