Suppr超能文献

具有聚类数据的非线性分位数回归建模与估计

Modelling and estimation of nonlinear quantile regression with clustered data.

作者信息

Geraci Marco

机构信息

Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, COlumbia SC, USA.

出版信息

Comput Stat Data Anal. 2019 Aug;136:30-46. doi: 10.1016/j.csda.2018.12.005. Epub 2018 Dec 21.

Abstract

In regression applications, the presence of nonlinearity and correlation among observations offer computational challenges not only in traditional settings such as least squares regression, but also (and especially) when the objective function is nonsmooth as in the case of quantile regression. Methods are developed for the modelling and estimation of nonlinear conditional quantile functions when data are clustered within two-level nested designs. The proposed estimation algorithm is a blend of a smoothing algorithm for quantile regression and a second order Laplacian approximation for nonlinear mixed models. This optimization approach has the appealing advantage of reducing the original nonsmooth problem to an approximated problem. While the estimation algorithm is iterative, the objective function to be optimized has a simple analytic form. The proposed methods are assessed through a simulation study and two applications, one in pharmacokinetics and one related to growth curve modelling in agriculture.

摘要

在回归应用中,观测值之间的非线性和相关性不仅在诸如最小二乘回归等传统设置中带来计算挑战,而且(尤其)当目标函数如分位数回归那样非光滑时更是如此。当数据在两级嵌套设计中聚类时,开发了用于非线性条件分位数函数建模和估计的方法。所提出的估计算法是分位数回归的平滑算法与非线性混合模型的二阶拉普拉斯近似的混合。这种优化方法具有将原始非光滑问题简化为近似问题的诱人优势。虽然估计算法是迭代的,但要优化的目标函数具有简单的解析形式。通过模拟研究和两个应用对所提出的方法进行评估,一个应用于药代动力学,另一个与农业中的生长曲线建模相关。

相似文献

1
Modelling and estimation of nonlinear quantile regression with clustered data.
Comput Stat Data Anal. 2019 Aug;136:30-46. doi: 10.1016/j.csda.2018.12.005. Epub 2018 Dec 21.
2
Robust Bayesian growth curve modelling using conditional medians.
Br J Math Stat Psychol. 2021 May;74(2):286-312. doi: 10.1111/bmsp.12216. Epub 2020 Sep 14.
4
Shrinkage estimation of fixed and random effects in linear quantile mixed models.
J Appl Stat. 2021 Aug 6;49(14):3693-3716. doi: 10.1080/02664763.2021.1962262. eCollection 2022.
5
An Algorithm of Nonparametric Quantile Regression.
J Stat Theory Pract. 2023;17(2):32. doi: 10.1007/s42519-023-00325-8. Epub 2023 Mar 29.
6
Quantile regression in linear mixed models: a stochastic approximation EM approach.
Stat Interface. 2017;10(3):471-482. doi: 10.4310/SII.2017.v10.n3.a10.
7
Quantile regression for censored mixed-effects models with applications to HIV studies.
Stat Interface. 2015;8(2):203-215. doi: 10.4310/SII.2015.v8.n2.a8.
8
Corrected-loss estimation for quantile regression with covariate measurement errors.
Biometrika. 2012 Jun;99(2):405-421. doi: 10.1093/biomet/ass005. Epub 2012 Mar 30.
9
Bayesian nonparametric quantile process regression and estimation of marginal quantile effects.
Biometrics. 2023 Mar;79(1):151-164. doi: 10.1111/biom.13576. Epub 2021 Nov 10.
10
Non-crossing weighted kernel quantile regression with right censored data.
Lifetime Data Anal. 2016 Jan;22(1):100-21. doi: 10.1007/s10985-014-9314-8. Epub 2014 Dec 16.

引用本文的文献

1
Divergent Pattern of Development in Rats and Humans.
Neurotox Res. 2023 Dec 26;42(1):7. doi: 10.1007/s12640-023-00683-y.
2
Quantile hidden semi-Markov models for multivariate time series.
Stat Comput. 2022;32(4):61. doi: 10.1007/s11222-022-10130-1. Epub 2022 Aug 9.
3
Modified check loss for efficient estimation via model selection in quantile regression.
J Appl Stat. 2020 Apr 16;48(5):866-886. doi: 10.1080/02664763.2020.1753023. eCollection 2021.
5
Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil.
Financ Res Lett. 2020 Oct;36:101658. doi: 10.1016/j.frl.2020.101658. Epub 2020 Jun 18.
6
Generalized linear mixed quantile regression with panel data.
PLoS One. 2020 Aug 11;15(8):e0237326. doi: 10.1371/journal.pone.0237326. eCollection 2020.
7
Quantile Regression Modeling of Latent Trajectory Features with Longitudinal Data.
J Appl Stat. 2019;46(16):2884-2904. doi: 10.1080/02664763.2019.1620706. Epub 2019 May 27.

本文引用的文献

1
A class of generalized linear mixed models adjusted for marginal interpretability.
Stat Med. 2021 Jan 30;40(2):427-440. doi: 10.1002/sim.8782. Epub 2020 Oct 22.
2
Additive quantile regression for clustered data with an application to children's physical activity.
J R Stat Soc Ser C Appl Stat. 2019 Aug;68(4):1071-1089. doi: 10.1111/rssc.12333. Epub 2018 Dec 25.
4
Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium.
Eur Heart J. 2016 Aug 7;37(30):2428-37. doi: 10.1093/eurheartj/ehw172. Epub 2016 May 12.
5
Are We There Yet? Compliance with Physical Activity Standards in YMCA Afterschool Programs.
Child Obes. 2016 Aug;12(4):237-46. doi: 10.1089/chi.2015.0223. Epub 2016 Apr 20.
7
Energetic and ecological constraints on population density of reef fishes.
Proc Biol Sci. 2016 Jan 27;283(1823). doi: 10.1098/rspb.2015.2186.
8
Study of Optimal Perimetric Testing In Children (OPTIC): Normative Visual Field Values in Children.
Ophthalmology. 2015 Aug;122(8):1711-7. doi: 10.1016/j.ophtha.2015.04.038. Epub 2015 Jun 11.
9
Coral reefs. Limited scope for latitudinal extension of reef corals.
Science. 2015 Jun 5;348(6239):1135-8. doi: 10.1126/science.1259911.
10
Re: "Quantile regression—opportunities and challenges from a user's perspective".
Am J Epidemiol. 2015 Jan 15;181(2):152-3. doi: 10.1093/aje/kwu346. Epub 2014 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验