Suppr超能文献

虚拟药效团筛选鉴定 Rev1-CT/RIR 蛋白-蛋白相互作用的小分子抑制剂。

Virtual Pharmacophore Screening Identifies Small-Molecule Inhibitors of the Rev1-CT/RIR Protein-Protein Interaction.

机构信息

Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT, 06269, USA.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

ChemMedChem. 2019 Sep 4;14(17):1610-1617. doi: 10.1002/cmdc.201900307. Epub 2019 Aug 21.

Abstract

Translesion synthesis (TLS) has emerged as a mechanism through which several forms of cancer develop acquired resistance to first-line genotoxic chemotherapies by allowing replication to continue in the presence of damaged DNA. Small molecules that inhibit TLS hold promise as a novel class of anticancer agents that can serve to enhance the efficacy of these front-line therapies. We previously used a structure-based rational design approach to identify the phenazopyridine scaffold as an inhibitor of TLS that functions by disrupting the protein-protein interaction (PPI) between the C-terminal domain of the TLS DNA polymerase Rev1 (Rev1-CT) and the Rev1 interacting regions (RIR) of other TLS DNA polymerases. To continue the identification of small molecules that disrupt the Rev1-CT/RIR PPI, we generated a pharmacophore model based on the phenazopyridine scaffold and used it in a structure-based virtual screen. In vitro analysis of promising hits identified several new chemotypes with the ability to disrupt this key TLS PPI. In addition, several of these compounds were found to enhance the efficacy of cisplatin in cultured cells, highlighting their anti-TLS potential.

摘要

跨损伤合成(TLS)已成为一种机制,通过该机制,几种形式的癌症在存在受损 DNA 的情况下允许复制继续进行,从而对一线致瘤化学疗法产生获得性耐药性。抑制 TLS 的小分子有望成为一类新型抗癌药物,可增强这些一线疗法的疗效。我们之前使用基于结构的合理设计方法,确定了苯并恶嗪支架作为 TLS 抑制剂,其通过破坏 TLS DNA 聚合酶 Rev1(Rev1-CT)的 C 末端结构域与其他 TLS DNA 聚合酶的 Rev1 相互作用区(RIR)之间的蛋白质-蛋白质相互作用(PPI)来发挥作用。为了继续鉴定破坏 Rev1-CT/RIR PPI 的小分子,我们基于苯并恶嗪支架生成了一个药效团模型,并在基于结构的虚拟筛选中使用了该模型。对有前途的命中化合物的体外分析确定了几种具有破坏这种关键 TLS PPI 能力的新型化学型。此外,这些化合物中的几种被发现可增强顺铂在培养细胞中的疗效,突出了它们的抗 TLS 潜力。

相似文献

1
Virtual Pharmacophore Screening Identifies Small-Molecule Inhibitors of the Rev1-CT/RIR Protein-Protein Interaction.
ChemMedChem. 2019 Sep 4;14(17):1610-1617. doi: 10.1002/cmdc.201900307. Epub 2019 Aug 21.
2
Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.
ACS Chem Biol. 2017 Jul 21;12(7):1903-1912. doi: 10.1021/acschembio.6b01144. Epub 2017 Jun 9.
3
Structural Approach To Identify a Lead Scaffold That Targets the Translesion Synthesis Polymerase Rev1.
J Chem Inf Model. 2018 Nov 26;58(11):2266-2277. doi: 10.1021/acs.jcim.8b00535. Epub 2018 Oct 19.
4
Lead compound profiling for small molecule inhibitors of the REV1-CT/RIR Translesion synthesis Protein-Protein interaction.
Bioorg Med Chem. 2024 May 15;106:117755. doi: 10.1016/j.bmc.2024.117755. Epub 2024 May 9.
6
Small molecule scaffolds that disrupt the Rev1-CT/RIR protein-protein interaction.
Bioorg Med Chem. 2018 Aug 7;26(14):4301-4309. doi: 10.1016/j.bmc.2018.07.029. Epub 2018 Jul 19.
8
Structure-Based Drug Design of Phenazopyridine Derivatives as Inhibitors of Rev1 Interactions in Translesion Synthesis.
ChemMedChem. 2021 Apr 8;16(7):1126-1132. doi: 10.1002/cmdc.202000893. Epub 2021 Jan 28.
9
NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
J Mol Biol. 2013 Sep 9;425(17):3091-105. doi: 10.1016/j.jmb.2013.05.029. Epub 2013 Jun 7.
10
Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and κ.
J Biol Chem. 2012 Jul 27;287(31):26400-8. doi: 10.1074/jbc.M112.380998. Epub 2012 Jun 14.

引用本文的文献

1
Protein Assemblies in Translesion Synthesis.
Genes (Basel). 2024 Jun 24;15(7):832. doi: 10.3390/genes15070832.
2
Lead compound profiling for small molecule inhibitors of the REV1-CT/RIR Translesion synthesis Protein-Protein interaction.
Bioorg Med Chem. 2024 May 15;106:117755. doi: 10.1016/j.bmc.2024.117755. Epub 2024 May 9.
3
REV7 in Cancer Biology and Management.
Cancers (Basel). 2023 Mar 11;15(6):1721. doi: 10.3390/cancers15061721.
4
DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target.
Front Oncol. 2022 Feb 7;11:822500. doi: 10.3389/fonc.2021.822500. eCollection 2021.
5
REV1 Inhibition Enhances Radioresistance and Autophagy.
Cancers (Basel). 2021 Oct 21;13(21):5290. doi: 10.3390/cancers13215290.
6
Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy.
RSC Chem Biol. 2021 Jun 21;2(4):1167-1195. doi: 10.1039/d1cb00101a. eCollection 2021 Aug 5.
7
Structure-Based Drug Design of Phenazopyridine Derivatives as Inhibitors of Rev1 Interactions in Translesion Synthesis.
ChemMedChem. 2021 Apr 8;16(7):1126-1132. doi: 10.1002/cmdc.202000893. Epub 2021 Jan 28.
8
Translesion synthesis inhibitors as a new class of cancer chemotherapeutics.
Expert Opin Investig Drugs. 2021 Jan;30(1):13-24. doi: 10.1080/13543784.2021.1850692. Epub 2020 Dec 3.

本文引用的文献

1
Structural Approach To Identify a Lead Scaffold That Targets the Translesion Synthesis Polymerase Rev1.
J Chem Inf Model. 2018 Nov 26;58(11):2266-2277. doi: 10.1021/acs.jcim.8b00535. Epub 2018 Oct 19.
2
Small molecule scaffolds that disrupt the Rev1-CT/RIR protein-protein interaction.
Bioorg Med Chem. 2018 Aug 7;26(14):4301-4309. doi: 10.1016/j.bmc.2018.07.029. Epub 2018 Jul 19.
3
Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities.
Chem Res Toxicol. 2017 Nov 20;30(11):1942-1955. doi: 10.1021/acs.chemrestox.7b00157. Epub 2017 Sep 28.
4
Inhibition of mutagenic translesion synthesis: A possible strategy for improving chemotherapy?
PLoS Genet. 2017 Aug 17;13(8):e1006842. doi: 10.1371/journal.pgen.1006842. eCollection 2017 Aug.
5
Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.
ACS Chem Biol. 2017 Jul 21;12(7):1903-1912. doi: 10.1021/acschembio.6b01144. Epub 2017 Jun 9.
6
Translesion DNA polymerases in eukaryotes: what makes them tick?
Crit Rev Biochem Mol Biol. 2017 Jun;52(3):274-303. doi: 10.1080/10409238.2017.1291576. Epub 2017 Mar 9.
7
Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics.
J Med Chem. 2016 Oct 27;59(20):9321-9336. doi: 10.1021/acs.jmedchem.6b00596. Epub 2016 Jul 19.
9
Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass.
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2954-9. doi: 10.1073/pnas.1324001111. Epub 2014 Jan 21.
10
Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments.
J Comput Aided Mol Des. 2013 Mar;27(3):221-34. doi: 10.1007/s10822-013-9644-8. Epub 2013 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验