Suppr超能文献

一种用于实时双向动态深度聚焦的新波束形成方法和硬件架构。

A new beamforming method and hardware architecture for real time two way dynamic depth focusing.

机构信息

DASEL, Avda. del Cañal 44 Nave 3, 28500 Arganda del Rey, Madrid, Spain.

Ultrasound Systems and Technology Group (GSTU), Spanish National Research Council (CSIC), c/ Serrano 144, 28006 Madrid, Spain.

出版信息

Ultrasonics. 2019 Nov;99:105965. doi: 10.1016/j.ultras.2019.105965. Epub 2019 Jul 21.

Abstract

The Total Focusing Method (TFM) yields a focused image in emission and in reception while Phased Array (PA) imaging provides Dynamic Depth Focusing (DDF) in reception only. Besides, most NDE applications have two propagation media, where refraction at the interface complicates time-of-flight (TOF) and focal law computations. This affects especially TFM, which must compute the TOFs from all elements to image pixels and use them to select the data for imaging. A new method with real-time Dynamic Depth Full Focusing (DDFF), in emission and reception, is proposed in this work. It is called Total Focusing Phased Array (TFPA) because it uses concepts of TFM and PA. Omnidirectional emissions are used to create a synthetic aperture as in TFM, while beamforming is carried out along scan lines as in PA, simplifying the delay calculation in the presence of interfaces and providing an efficient hardware implementation. Refraction at the interface between two media is eliminated by a Virtual Array (VA) that converts such scenario into a simple homogeneous medium. Propagation can be considered along scan lines from the virtual array at constant speed, as in homogeneous media. Strict dynamic focusing is performed in real-time, an important difference with other approaches that require iterative Fermat search to get the focal laws for every imaged point. With TFPA only 3 parameters per element and scan line are required to perform this task. Experiments are carried out to compare the three techniques, PA, TFM and TFPA. TFM and TFPA yield similar image quality, offering improved depth of field and resolution over PA. On the other hand, TFPA avoids most of the burden for computing TOFs and operates in real time with one or two media propagation.

摘要

全聚焦方法(TFM)在发射和接收时都能产生聚焦图像,而相控阵(PA)成像仅在接收时提供动态深度聚焦(DDF)。此外,大多数无损检测应用都有两种传播介质,在界面处的折射会使飞行时间(TOF)和焦点定律计算变得复杂。这尤其影响了 TFM,它必须从所有单元计算 TOF 到图像像素,并使用它们来选择用于成像的数据。本工作提出了一种新的实时发射和接收动态深度全聚焦(DDFF)方法。它被称为全聚焦相控阵(TFPA),因为它使用了 TFM 和 PA 的概念。全向发射用于创建类似于 TFM 的合成孔径,而波束形成则沿着扫描线进行,简化了界面存在时的延迟计算,并提供了高效的硬件实现。通过虚拟阵列(VA)消除两种介质之间界面的折射,将这种情况转换为简单的均匀介质。可以将传播视为从虚拟阵列以恒定速度沿扫描线进行,就像在均匀介质中一样。实时进行严格的动态聚焦,这与其他需要迭代费马搜索以获取每个成像点的焦点定律的方法有重要区别。使用 TFPA,每个单元和扫描线仅需要 3 个参数即可执行此任务。进行了实验来比较三种技术,PA、TFM 和 TFPA。TFM 和 TFPA 产生相似的图像质量,提供了比 PA 更好的景深和分辨率。另一方面,TFPA 避免了计算 TOF 的大部分负担,并可以在一个或两个传播介质的情况下实时运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验