Bauman D E, Peel C J, Steinhour W D, Reynolds P J, Tyrrell H F, Brown A C, Haaland G L
Department of Animal Science, Cornell University, Ithaca, NY 14853.
J Nutr. 1988 Aug;118(8):1031-40. doi: 10.1093/jn/118.8.1031.
Effects of bovine somatotropin (bST) on irreversible loss rate (ILR) and oxidation rate of glucose and nonesterified fatty acids (NEFA) were examined. Nine lactating cows received bST or excipient in a single reversal design using 14-d periods. Kinetic variables were estimated by compartmental analysis of blood metabolite and expired CO2 specific activity values obtained during infusion of [U-14C]glucose or [1-14C]palmitate. With bST treatment, milk energy yield increased by 31% but feed intake was unchanged. Blood glucose concentrations were not affected by treatment or correlated with any glucose kinetic variables. In the control period, glucose ILR was 12.1 mol/d with 66.5% utilized for milk lactose synthesis and 17.4% oxidized to CO2. Treatment with bST increased glucose ILR (+1.5 mol/d) and reduced glucose oxidation (-0.4 mol/d); this accommodated the additional glucose (+1.3 mol/d) required for the increase in lactose secretion. Increases in milk energy yield with bST treatment caused cows to be in a substantial negative net energy balance (-9.8 Mcal/d). No acute lipolytic response occurred with bST treatment, but plasma NEFA were chronically elevated (+104 mumol/L) and NEFA ILR increased (+2.3 mol/d). Increased NEFA turnover was primarily used for increased oxidation to CO2 (+0.5 mol/d) and 41% increase in milk fat (equal to approximately 1.3 mol fatty acids/d). For NEFA, plasma concentrations were correlated with ILR (r = +0.80), oxidation to CO2 (r = +0.74) and net energy balance (r = -0.78). Overall, bST resulted in an exquisite coordination of metabolism to meet nutrient needs for increased synthesis of milk components.