Suppr超能文献

联合集成对接和机器学习在鉴定对人 CES1 具有潜在抑制作用的治疗剂中的应用。

Combined Ensemble Docking and Machine Learning in Identification of Therapeutic Agents with Potential Inhibitory Effect on Human CES1.

机构信息

INSERM U1133, CNRS UMR 8251, Unit of functional and adaptive biology, Université de Paris, Paris 75013, France.

Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.

出版信息

Molecules. 2019 Jul 29;24(15):2747. doi: 10.3390/molecules24152747.

Abstract

The human carboxylesterase 1 (CES1), responsible for the biotransformation of many diverse therapeutic agents, may contribute to the occurrence of adverse drug reactions and therapeutic failure through drug interactions. The present study is designed to address the issue of potential drug interactions resulting from the inhibition of CES1. Based on an ensemble of 10 crystal structures complexed with different ligands and a set of 294 known CES1 ligands, we used docking (Autodock Vina) and machine learning methodologies (LDA, QDA and multilayer perceptron), considering the different energy terms from the scoring function to assess the best combination to enable the identification of CES1 inhibitors. The protocol was then applied on a library of 1114 FDA-approved drugs and eight drugs were selected for in vitro CES1 inhibition. An inhibition effect was observed for diltiazem (IC50 = 13.9 µM). Three others drugs (benztropine, iloprost and treprostinil), exhibited a weak CES1 inhibitory effects with IC50 values of 298.2 µM, 366.8 µM and 391.6 µM respectively. In conclusion, the binding site of CES1 is relatively flexible and can adapt its conformation to different types of ligands. Combining ensemble docking and machine learning approaches improves the prediction of CES1 inhibitors compared to a docking study using only one crystal structure.

摘要

人类羧酸酯酶 1(CES1)负责许多不同治疗药物的生物转化,可能通过药物相互作用导致不良反应和治疗失败的发生。本研究旨在解决 CES1 抑制引起的潜在药物相互作用问题。基于与不同配体结合的 10 个晶体结构的集合和 294 个已知 CES1 配体的集合,我们使用对接(Autodock Vina)和机器学习方法(LDA、QDA 和多层感知机),考虑来自评分函数的不同能量项,以评估最佳组合,从而能够识别 CES1 抑制剂。然后将该方案应用于 1114 种 FDA 批准药物的库中,并选择了 8 种药物进行体外 CES1 抑制研究。观察到地尔硫卓(IC50 = 13.9 µM)的抑制作用。另外三种药物(苯扎托品、伊洛前列素和曲前列素)的 CES1 抑制作用较弱,IC50 值分别为 298.2 µM、366.8 µM 和 391.6 µM。总之,CES1 的结合位点相对灵活,可以适应不同类型的配体。与仅使用一个晶体结构的对接研究相比,组合对接和机器学习方法可提高 CES1 抑制剂的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6a3/6696021/df097f9826fb/molecules-24-02747-g001.jpg

相似文献

2
Discovery of natural pentacyclic triterpenoids as potent and selective inhibitors against human carboxylesterase 1.
Fitoterapia. 2019 Sep;137:104199. doi: 10.1016/j.fitote.2019.104199. Epub 2019 Jun 5.
3
Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.
Mol Divers. 2016 Nov;20(4):945-961. doi: 10.1007/s11030-016-9688-5. Epub 2016 Jul 18.
4
In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors.
Drug Metab Dispos. 2014 Jan;42(1):126-33. doi: 10.1124/dmd.113.053512. Epub 2013 Oct 18.
5
Inhibition behavior of fructus psoraleae's ingredients towards human carboxylesterase 1 (hCES1).
Xenobiotica. 2016;46(6):503-10. doi: 10.3109/00498254.2015.1091521. Epub 2015 Nov 11.
6
Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: potential sources of metabolic drug interactions.
Toxicology. 2010 Apr 11;270(2-3):59-65. doi: 10.1016/j.tox.2010.01.009. Epub 2010 Jan 25.
7
Per- and polyfluoroalkyl substances exert strong inhibition towards human carboxylesterases.
Environ Pollut. 2020 Aug;263(Pt A):114463. doi: 10.1016/j.envpol.2020.114463. Epub 2020 Apr 4.
8
Assessment of the inhibitory effects of pyrethroids against human carboxylesterases.
Toxicol Appl Pharmacol. 2017 Apr 15;321:48-56. doi: 10.1016/j.taap.2017.02.018. Epub 2017 Feb 24.
10
Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.
Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):305-310. doi: 10.1016/j.bbrc.2017.10.035. Epub 2017 Oct 7.

引用本文的文献

1
TB-IECS: an accurate machine learning-based scoring function for virtual screening.
J Cheminform. 2023 Jul 4;15(1):63. doi: 10.1186/s13321-023-00731-x.
2
Discovery and Characterization of the Biflavones From as Highly Specific and Potent Inhibitors Against Human Carboxylesterase 2.
Front Pharmacol. 2021 May 18;12:655659. doi: 10.3389/fphar.2021.655659. eCollection 2021.
3
Carboxylesterase 1 and Precision Pharmacotherapy: Pharmacogenetics and Nongenetic Regulators.
Drug Metab Dispos. 2020 Mar;48(3):230-244. doi: 10.1124/dmd.119.089680. Epub 2019 Dec 23.

本文引用的文献

1
PySpark and RDKit: Moving towards Big Data in Cheminformatics.
Mol Inform. 2019 Jun;38(6):e1800082. doi: 10.1002/minf.201800082. Epub 2019 Mar 7.
2
PubChem 2019 update: improved access to chemical data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109. doi: 10.1093/nar/gky1033.
3
Pharmacometabolomics Informs About Pharmacokinetic Profile of Methylphenidate.
CPT Pharmacometrics Syst Pharmacol. 2018 Aug;7(8):525-533. doi: 10.1002/psp4.12309.
4
Incorporating Protein Dynamics Through Ensemble Docking in Machine Learning Models to Predict Drug Binding.
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:26-34. eCollection 2018.
5
Ensemble Docking in Drug Discovery.
Biophys J. 2018 May 22;114(10):2271-2278. doi: 10.1016/j.bpj.2018.02.038. Epub 2018 Mar 30.
6
How large B-factors can be in protein crystal structures.
BMC Bioinformatics. 2018 Feb 23;19(1):61. doi: 10.1186/s12859-018-2083-8.
7
The ChEMBL database in 2017.
Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954. doi: 10.1093/nar/gkw1074. Epub 2016 Nov 28.
8
The RCSB protein data bank: integrative view of protein, gene and 3D structural information.
Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281. doi: 10.1093/nar/gkw1000. Epub 2016 Oct 27.
9
Recent Structural Insights into Cytochrome P450 Function.
Trends Pharmacol Sci. 2016 Aug;37(8):625-640. doi: 10.1016/j.tips.2016.05.006. Epub 2016 Jun 4.
10
Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening.
PLoS One. 2016 May 12;11(5):e0155183. doi: 10.1371/journal.pone.0155183. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验