Suppr超能文献

基于超疏水纳米柱阵列上液滴下垂效应的可调谐光学布拉格光栅滤波器

A Tunable Optical Bragg Grating Filter Based on the Droplet Sagging Effect on a Superhydrophobic Nanopillar Array.

作者信息

Zhang Meng, Liu Jiansheng, Cheng Weifeng, Cheng Jiangtao, Zheng Zheng

机构信息

School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Rd, Beijing 100191, China.

Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061, USA.

出版信息

Sensors (Basel). 2019 Jul 29;19(15):3324. doi: 10.3390/s19153324.

Abstract

Nanostructures have been widely applied on superhydrophobic surfaces for controlling the wetting states of liquid microdroplets. Many modern optic devices including sensors are also integrated with micro- or nanostructures for function enhancement. However, it is rarely reported that both microfluidics and optics are compatibly integrated in the same nanostructures. In this paper, a novel microfluidic-controlled tunable filter composed of an array of periodic micro/nanopillars on top of a planar waveguide is proposed and numerically simulated, in which the periodic pillars endow both the Bragg grating and the superhydrophobic functions. The tunability of grating is achieved by controlling the sagging depth of a liquid droplet into the periodic pillars. Simulation results show that a narrow bandwidth of 0.4 nm and a wide wavelength tuning range over 25 nm can be achieved by such a microfluidic-based tunable optofluidic waveguide Bragg grating filter. Moreover, this proposed scheme can be easily modified as a refractive index sensor with a sensitivity of 103 nm per refractive index unit.

摘要

纳米结构已被广泛应用于超疏水表面,用于控制液体微滴的润湿状态。许多包括传感器在内的现代光学器件也集成了微纳结构以增强功能。然而,微流体和光学兼容集成于同一纳米结构的情况却鲜有报道。本文提出并数值模拟了一种新型的微流体控制可调滤波器,它由平面波导顶部的周期性微/纳米柱阵列组成,其中周期性柱兼具布拉格光栅和超疏水功能。通过控制液滴进入周期性柱的凹陷深度来实现光栅的可调性。模拟结果表明,这种基于微流体的可调光流体波导布拉格光栅滤波器可实现0.4nm的窄带宽和超过25nm的宽波长调谐范围。此外,该方案可轻松修改为折射率传感器,灵敏度为每折射率单位103nm。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3059/6696401/e149b96e4295/sensors-19-03324-g001.jpg

相似文献

4
A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.
Lab Chip. 2010 Apr 21;10(8):1072-8. doi: 10.1039/b920412a. Epub 2010 Jan 25.
7
Broadband tunable filter based on the loop of multimode Bragg grating.
Opt Express. 2018 Jan 8;26(1):559-566. doi: 10.1364/OE.26.000559.
8
Polymeric tunable wavelength filter with two-stage cascaded tilted Bragg gratings.
Opt Express. 2020 Mar 30;28(7):10145-10152. doi: 10.1364/OE.387766.
10
Polymer waveguide WDM channel selector operating over the entire C and L bands.
Opt Express. 2018 Jun 25;26(13):16323-16332. doi: 10.1364/OE.26.016323.

引用本文的文献

本文引用的文献

1
Electrowetting-Dominated Instability of Cassie Droplets on Superlyophobic Pillared Surfaces.
Langmuir. 2019 Feb 12;35(6):2013-2022. doi: 10.1021/acs.langmuir.8b02825. Epub 2019 Jan 29.
2
Dynamically Tunable Light Absorbers as Color Filters Based on Electrowetting Technology.
Nanomaterials (Basel). 2019 Jan 6;9(1):70. doi: 10.3390/nano9010070.
4
Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.
Opt Lett. 2018 Jan 1;43(1):13-16. doi: 10.1364/OL.43.000013.
5
Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.
Opt Lett. 2015 Dec 1;40(23):5471-4. doi: 10.1364/OL.40.005471.
6
Interfacial material system exhibiting superwettability.
Adv Mater. 2014 Oct 29;26(40):6872-97. doi: 10.1002/adma.201400883. Epub 2014 Jul 8.
7
Reversible switching between superhydrophobic states on a hierarchically structured surface.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10210-3. doi: 10.1073/pnas.1204328109. Epub 2012 Jun 11.
8
Slotted photonic crystal cavities with integrated microfluidics for biosensing applications.
Biosens Bioelectron. 2011 Sep 15;27(1):101-5. doi: 10.1016/j.bios.2011.06.023. Epub 2011 Jun 25.
9
Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction.
Phys Rev Lett. 2011 Jan 7;106(1):014502. doi: 10.1103/PhysRevLett.106.014502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验