Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
Temasek Life Sciences Laboratory, and the Department of Biological Sciences, National University of Singapore, Singapore.
mBio. 2019 Jul 30;10(4):e01581-19. doi: 10.1128/mBio.01581-19.
Precise kinetochore-microtubule interactions ensure faithful chromosome segregation in eukaryotes. Centromeres, identified as scaffolding sites for kinetochore assembly, are among the most rapidly evolving chromosomal loci in terms of the DNA sequence and length and organization of intrinsic elements. Neither the centromere structure nor the kinetochore dynamics is well studied in plant-pathogenic fungi. Here, we sought to understand the process of chromosome segregation in the rice blast fungus High-resolution imaging of green fluorescent protein (GFP)-tagged inner kinetochore proteins CenpA and CenpC revealed unusual albeit transient declustering of centromeres just before anaphase separation of chromosomes in Strikingly, the declustered centromeres positioned randomly at the spindle midzone without an apparent metaphase plate Using CenpA chromatin immunoprecipitation followed by deep sequencing, all seven centromeres in were found to be regional, spanning 57-kb to 109-kb transcriptionally poor regions. Highly AT-rich and heavily methylated DNA sequences were the only common defining features of all the centromeres in rice blast. Lack of centromere-specific DNA sequence motifs or repetitive elements suggests an epigenetic specification of centromere function in PacBio genome assemblies and synteny analyses facilitated comparison of the centromeric/pericentromeric regions in distinct isolates of rice blast and wheat blast and in Overall, this study revealed unusual centromere dynamics and precisely identified the centromere loci in the top model fungal pathogens that belong to and cause severe losses in the global production of food crops and turf grasses. is an important fungal pathogen that causes a loss of 10% to 30% of the annual rice crop due to the devastating blast disease. In most organisms, kinetochores are clustered together or arranged at the metaphase plate to facilitate synchronized anaphase separation of sister chromatids in mitosis. In this study, we showed that the initially clustered kinetochores separate and position randomly prior to anaphase in Centromeres in occupy large genomic regions and form on AT-rich DNA without any common sequence motifs. Overall, this study identified atypical kinetochore dynamics and mapped functional centromeres in to define the roles of centromeric and pericentric boundaries in kinetochore assembly on epigenetically specified centromere loci. This study should pave the way for further understanding of the contribution of heterochromatin in genome stability and virulence of the blast fungus and its related species of high economic importance.
精确的着丝粒-微管相互作用确保了真核生物中染色体的正确分离。着丝粒作为着丝粒组装的支架位点,在 DNA 序列、固有元件的长度和组织方面是进化最快的染色体位点之一。植物病原真菌中的着丝粒结构和着丝粒动力学都没有得到很好的研究。在这里,我们试图了解水稻恶疫病菌中染色体分离的过程。通过对绿色荧光蛋白(GFP)标记的内着丝粒蛋白 CenpA 和 CenpC 的高分辨率成像,我们发现,在染色体后期分离之前,着丝粒会出现异常但短暂的去聚类。引人注目的是,去聚类的着丝粒随机定位在纺锤体中部,而没有明显的中期板。使用 CenpA 染色质免疫沉淀 followed by deep sequencing,在 中发现所有七个着丝粒都是区域性的,跨越 57-kb 到 109-kb 的转录贫区。富含 AT 和高度甲基化的 DNA 序列是水稻恶疫中所有着丝粒的唯一共同定义特征。缺乏着丝粒特异性 DNA 序列基序或重复元件表明,在 中,着丝粒功能是通过表观遗传来指定的。PacBio 基因组组装和同线性分析有助于比较不同水稻恶疫和小麦恶疫分离株以及 在总体上,这项研究揭示了水稻恶疫中异常的着丝粒动力学,并精确地确定了属于 并导致全球粮食作物和草坪草严重减产的顶级模式真菌病原体中的着丝粒位点。是一种重要的真菌病原体,由于毁灭性的稻瘟病,每年导致 10%至 30%的水稻减产。在大多数生物体中,着丝粒聚集在一起或排列在中期板上,以促进有丝分裂中姐妹染色单体的同步后期分离。在这项研究中,我们表明,最初聚集的着丝粒在 后期分离之前分离并随机定位。在 中,着丝粒占据大片基因组区域,并在富含 AT 的 DNA 上形成,没有任何共同的序列基序。总的来说,这项研究确定了 中异常的着丝粒动力学,并在 中绘制了功能着丝粒,以定义着丝粒组装在表观遗传指定的着丝粒基因座上的着丝粒和着丝粒周围边界的作用。这项研究应该为进一步了解异染色质在基因组稳定性和稻瘟病菌及其相关高经济重要物种的毒力中的贡献铺平道路。
Proc Natl Acad Sci U S A. 2008-12-16
Plant J. 2015-7
Annu Rev Microbiol. 2020-9-8
Subcell Biochem. 2010
Chromosome Res. 2025-8-11
Mol Plant Pathol. 2024-4
PLoS Pathog. 2024-3-28
J Fungi (Basel). 2023-1-28
Trends Genet. 2019-2-28
Proc Natl Acad Sci U S A. 2018-10-29
PLoS Pathog. 2018-8-23
Proc Natl Acad Sci U S A. 2018-3-5
Trends Microbiol. 2018-1-24