State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai, China.
Key Laboratory of Micro and Nano Photonic Structures (MOE), Department of Physics, Fudan University, Shanghai, China.
Nature. 2019 Aug;572(7770):497-501. doi: 10.1038/s41586-019-1445-3. Epub 2019 Jul 31.
Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. The van der Waals magnet chromium triiodide (CrI) has been shown to be a layered antiferromagnetic insulator in its few-layer form, opening up opportunities for various functionalities in electronic and optical devices. Here we report an emergent nonreciprocal second-order nonlinear optical effect in bilayer CrI. The observed second-harmonic generation (SHG; a nonlinear optical process that converts two photons of the same frequency into one photon of twice the fundamental frequency) is several orders of magnitude larger than known magnetization-induced SHG and comparable to the SHG of the best (in terms of nonlinear susceptibility) two-dimensional nonlinear optical materials studied so far (for example, molybdenum disulfide). We show that although the parent lattice of bilayer CrI is centrosymmetric, and thus does not contribute to the SHG signal, the observed giant nonreciprocal SHG originates only from the layered antiferromagnetic order, which breaks both the spatial-inversion symmetry and the time-reversal symmetry. Furthermore, polarization-resolved measurements reveal underlying C crystallographic symmetry-and thus monoclinic stacking order-in bilayer CrI, providing key structural information for the microscopic origin of layered antiferromagnetism. Our results indicate that SHG is a highly sensitive probe of subtle magnetic orders and open up possibilities for the use of two-dimensional magnets in nonlinear and nonreciprocal optical devices.
层状反铁磁性是指具有反铁磁层间耦合的铁磁层的空间排列。范德瓦尔斯磁体三碘化铬(CrI)在其少层形式中已被证明为层状反铁磁绝缘体,为电子和光学器件中的各种功能开辟了机会。在这里,我们报告了在双层 CrI 中出现的新兴非互易二阶非线性光学效应。观察到的二次谐波产生(SHG;一种将相同频率的两个光子转换为基频两倍的一个光子的非线性光学过程)比已知的磁化诱导 SHG 大几个数量级,并且与迄今为止研究过的最佳(就非线性介电常数而言)二维非线性光学材料(例如二硫化钼)相当。我们表明,尽管双层 CrI 的母体晶格是中心对称的,因此不会对 SHG 信号做出贡献,但观察到的巨大非互易 SHG 仅源自层状反铁磁序,它打破了空间反演对称和时间反转对称。此外,偏振分辨测量揭示了双层 CrI 中存在的 C 晶体学对称性和因此的单斜堆积顺序,为层状反铁磁的微观起源提供了关键的结构信息。我们的结果表明,SHG 是对微妙磁序的高度敏感探针,并为二维磁体在非线性和非互易光学器件中的应用开辟了可能性。