Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Laboratory for Structural Bioinformatics, Field for Structural Molecular Biology, Centre for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
Metab Brain Dis. 2019 Dec;34(6):1661-1677. doi: 10.1007/s11011-019-00473-6. Epub 2019 Jul 31.
Amyotrophic Lateral Sclerosis (ALS), a debilitating neurodegenerative disorder is related to mutations in a number of genes, and certain genes of the Ribonuclease (RNASE) superfamily trigger ALS more frequently. Even though missense mutations in Angiogenin (ANG) and Ribonuclease 4 (RNASE4) have been previously shown to cause ALS through loss-of-function mechanisms, understanding the role of rare variants with a plausible explanation of their functional loss mechanisms is an important mission. The study aims to understand if any of the rare ANG and RNASE4 variants catalogued in Project MinE consortium caused ALS due to loss of ribonucleolytic or nuclear translocation or both these activities. Several in silico analyses in combination with extensive molecular dynamics (MD) simulations were performed on wild-type ANG and RNASE4, along with six rare variants (T11S-ANG, R122H-ANG, D2E-RNASE4, N26K-RNASE4, T79A-RNASE4 and G119S-RNASE4) to study the structural and dynamic changes in the catalytic triad and nuclear localization signal residues responsible for ribonucleolytic and nuclear translocation activities respectively. Our comprehensive analyses comprising 1.2 μs simulations with a focus on physicochemical, structural and dynamic properties reveal that T11S-ANG, N26K-RNASE4 and T79A-RNASE4 variants would result in loss of ribonucleolytic activity due to conformational switching of catalytic His114 and His116 respectively but none of the variants would lose their nuclear translocation activity. Our study not only highlights the importance of rare variants but also demonstrates that elucidating the structure-function relationship of mutant effectors is crucial to gain insights into ALS pathophysiology and in developing effective therapeutics.
肌萎缩侧索硬化症(ALS)是一种使人虚弱的神经退行性疾病,与许多基因的突变有关,核糖核酸酶(RNASE)超家族的某些基因更频繁地引发 ALS。尽管先前已经表明血管生成素(ANG)和核糖核酸酶 4(RNASE4)中的错义突变通过失活机制导致 ALS,但了解具有合理功能丧失机制的罕见变体的作用是一项重要任务。该研究旨在了解项目 MinE 联盟中列出的任何罕见的 ANG 和 RNASE4 变体是否由于核糖核酸酶或核易位的丧失或这两种活性的丧失而导致 ALS。对野生型 ANG 和 RNASE4 以及六个罕见变体(T11S-ANG、R122H-ANG、D2E-RNASE4、N26K-RNASE4、T79A-RNASE4 和 G119S-RNASE4)进行了多种计算分析,以及广泛的分子动力学(MD)模拟,以研究负责核糖核酸酶和核易位活性的催化三联体和核定位信号残基的结构和动态变化。我们的综合分析包括聚焦于物理化学、结构和动态特性的 1.2 μs 模拟,揭示了 T11S-ANG、N26K-RNASE4 和 T79A-RNASE4 变体由于催化 His114 和 His116 的构象转换而导致核糖核酸酶活性丧失,但没有变体失去核易位活性。我们的研究不仅强调了罕见变体的重要性,还表明阐明突变效应物的结构-功能关系对于深入了解 ALS 病理生理学和开发有效的治疗方法至关重要。