Suppr超能文献

数据匮乏内陆地区中小河流的流量计算。

Streamflow calculation for medium-to-small rivers in data scarce inland areas.

机构信息

College of Water Sciences, Beijing Normal University, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, PR China; School of Geography, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, PR China; ICube, UdS, CNRS (UMR 7357), 300 Bld Sebastien Brant, CS 10413, 67412 Illkirch, France.

School of Geography, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, PR China.

出版信息

Sci Total Environ. 2019 Nov 25;693:133571. doi: 10.1016/j.scitotenv.2019.07.377. Epub 2019 Jul 29.

Abstract

Inland streamflow estimation is essential in global water supply and environment protection. In data-scarce areas a highly efficient way of estimating streamflow is through remote sensing methods. However, high requirement of most previous methods on ground-measured data hinder their wide use in data-scarce areas. Therefore, this paper presented a new framework for estimation of streamflow in medium-to-small rivers with few ground measurements by using high-resolution unmanned aerial vehicle (UAV) imagery. A new Virtual Hydraulic Radius (VHR) method was proposed to complement AMHG (at-many-stations hydraulic geometry), a method not requiring any ground measurements when global parameters are used (global-AMHG) in large-scaled rivers but yielding great uncertainties in smaller scaled rivers, thus creating a VHR-AMHG method for medium-to-small rivers. The accuracy verification of the proposed method was performed by comparing it to field measurement data and the global parameters of the original AMHG (global-AMHG). Results showed that the root mean square error calculated from VHR-AMHG was 32.15 m/s, while that from global-AMHG was 305.65 m/s, indicating that the VHR-AHRG method yields a significantly higher accuracy for streamflow estimation for medium-to-small rivers. We found that regardless of the size of the river, AMHG is not applicable for rivers having excessively small b values in the equation w = aQ (low-b rivers). For medium-to-small rivers with b < 0.25, AMHG is not recommended. The accuracy of the original AMHG method is limited by the initial value of the model parameters and the condition that the congruent discharge (Q) has to be within the range of observational discharge. The initial value setting of the model parameters significantly impacts the calculation accuracy. The VHR-AMHG method is able to overcome the deficiencies of the original AMHG, i.e. being overly dependent on the initial value setting with long-series known discharge data. It also eliminates the limitation of the Q condition, as it achieves a higher accuracy for rivers in which Q does not satisfy the condition compared to using global-AMHG on rivers that actually meet the condition, thus greatly expanding its usage scope. Thus VHR-AMHG method can provide detailed data on the spatial and temporal distribution of regional and national streamflow for governments and stakeholders, and offer scientific data support for wisely making water supply polices and sustainably protecting eco-environment.

摘要

内陆河流流量估算对于全球水资源供应和环境保护至关重要。在数据稀缺地区,通过遥感方法来估算河流流量是一种非常高效的方式。然而,大多数先前方法对地面测量数据的高要求阻碍了它们在数据稀缺地区的广泛应用。因此,本文提出了一种利用高分辨率无人机(UAV)图像估算中小河流流量的新框架,该框架仅需少量地面测量数据。本文提出了一种新的虚拟水力半径(VHR)方法,以补充 AMHG(多站点水力几何法),当使用全局参数时,该方法不需要任何地面测量数据(全局-AMHG),但在较小规模的河流中会产生很大的不确定性,因此创建了一种用于中小河流的 VHR-AMHG 方法。通过将该方法与现场测量数据和原始 AMHG 的全局参数(全局-AMHG)进行比较,对所提出方法的准确性进行了验证。结果表明,VHR-AMHG 计算的均方根误差为 32.15m/s,而全局-AMHG 的均方根误差为 305.65m/s,表明 VHR-AHRG 方法对于中小河流的流量估算具有更高的精度。我们发现,无论河流的大小如何,对于方程 w= aQ(低 b 河流)中 b 值过小的河流,AMHG 都不适用。对于 b<0.25 的中小河流,不建议使用 AMHG。原始 AMHG 方法的准确性受到模型参数初始值和流量(Q)必须在观测流量范围内的条件限制。模型参数的初始值设置显著影响计算精度。VHR-AMHG 方法能够克服原始 AMHG 的缺陷,即过度依赖具有长序列已知流量数据的初始值设置。它还消除了 Q 条件的限制,因为与在实际上满足条件的河流上使用全局-AMHG 相比,它为不满足条件的河流提供了更高的精度,从而大大扩大了其使用范围。因此,VHR-AMHG 方法可以为政府和利益相关者提供区域和国家流量的时空分布详细数据,为明智制定供水政策和可持续保护生态环境提供科学数据支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验