IEEE Trans Neural Netw Learn Syst. 2020 Jun;31(6):2118-2128. doi: 10.1109/TNNLS.2019.2927957. Epub 2019 Jul 31.
This paper addresses the biological plausibility of both backpropagation (BP) and contrastive Hebbian learning (CHL) used in the Boltzmann machines. The main claim of this paper is that CHL is a general learning algorithm that can be used to steer feedforward networks toward desirable outcomes, and steer them away from undesirable outcomes without any need for the specialized feedback circuit of BP or the symmetric connections used by the Boltzmann machines. After adding perturbations during the learning phase to all the neurons in the network, multiple feedforward outcomes are classified into Hebbian and anti-Hebbian sets based on the network predictions. The algorithm is applied to networks when optimizing a loss objective where BP excels and is also applied to networks with stochastic binary outputs where BP cannot be easily applied. The power of the proposed algorithm lies in its simplicity where both learning and gradient estimation through stochastic binary activations are combined into a single local Hebbian rule. We will also show that both Hebbian and anti-Hebbian correlations are evaluated from the readily available signals that are fundamentally different from CHL used in the Boltzmann machines. We will demonstrate that the new learning paradigm where Hebbian/anti-Hebbian correlations are based on correct/incorrect predictions is a powerful concept that separates this paper from other biologically inspired learning algorithms.
本文探讨了反向传播(BP)和对比海布学习(CHL)在玻尔兹曼机中的生物学合理性。本文的主要观点是,CHL 是一种通用的学习算法,可用于引导前馈网络朝着理想的结果发展,并引导它们远离不理想的结果,而无需 BP 的专用反馈电路或玻尔兹曼机使用的对称连接。在学习阶段向网络中的所有神经元添加扰动后,根据网络预测将多个前馈结果分类为海布和反海布集。该算法在优化 BP 擅长的损失目标的网络时得到应用,也在具有随机二进制输出的网络中得到应用,在这些网络中 BP 不易应用。该算法的强大之处在于其简单性,通过随机二进制激活进行学习和梯度估计都组合成一个单一的局部海布规则。我们还将表明,海布和反海布相关都可以从根本上不同于玻尔兹曼机中使用的 CHL 的现成信号中进行评估。我们将证明,基于正确/错误预测的新学习范式,其中海布/反海布相关是基于正确/错误预测的,是一个强大的概念,将本文与其他受生物启发的学习算法区分开来。