Suppr超能文献

Pt 载量对 Pb@Pt/C 纳米复合材料催化乙醇氧化反应活性的影响。

The Effect of Pt Loading on Catalytic Activity of Pb@Pt/C Nanocomposites Toward Ethanol Oxidation.

机构信息

Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, SE, 49032-490, Brazil.

Department of Physics, Universidade Federal de Sergipe, Campus Itabaiana, Av. Vereador Olimpio Grande, Itabaiana, SE, 49510-200, Brazil.

出版信息

J Nanosci Nanotechnol. 2020 Feb 1;20(2):878-889. doi: 10.1166/jnn.2020.16919.

Abstract

Here, we study the influence of the Pt loading and the particle size of Pb@Pt/C catalysts on their specific activity toward ethanol oxidation in acid media. High angle annular dark field-scanning transmission electron microscopy and electron energy loss spectroscopy data indicate the formation of Pb@Pt/C core-shell structures, which are well dispersed on carbon support, with spherical shapes and small particle sizes (2.9-6.6 nm). Cyclic voltammetry experiments confirm characteristic profiles of polycrystalline Pt for Pb@Pt/C structures. The specific activity of the catalysts toward ethanol oxidation reaction greatly depends on the Pt content on Pb core, and consequently, depends on the size of the nanoparticles. The optimum activity occurs with the lowest Pt load in the shell and smaller particle size. Enhancements in specific activity result from the higher number of nanoparticles available for the ethanol oxidation reaction and the tensile strain effect of Pt atoms on the surface expanded in Pb@Pt/C. The lower activity observed for the catalysts with loads of 35 and 50% wt. (Pb@Pt and Pb@Pt/C, respectively) in comparison to Pt/C, could be explain by the larger particle sizes obtained at these catalysts. Moreover, the Pb@Pt/C catalyst has high electrochemical stability and should be more stable in direct ethanol fuel cells systems than monolithic Pt catalysts. This is because the Pt shell in Pb@Pt/C exhibits lower chemical potential ( < 0) than at Pt/C and at the other core-shell catalysts studied; thus, reducing its tendency to dissolve. The developed core-shell nanostructure is thus a potential candidate as high-performance anode catalyst for application in direct ethanol fuel cells.

摘要

在这里,我们研究了 Pt 负载量和 Pb@Pt/C 催化剂粒径对其在酸性介质中乙醇氧化活性的影响。高角度环形暗场扫描透射电子显微镜和电子能量损失谱数据表明,形成了 Pb@Pt/C 核壳结构,这些结构在碳载体上分散良好,呈球形,粒径较小(2.9-6.6nm)。循环伏安实验证实了 Pb@Pt/C 结构具有多晶 Pt 的特征轮廓。催化剂对乙醇氧化反应的比活性强烈依赖于 Pb 核上的 Pt 含量,因此取决于纳米颗粒的大小。最佳活性出现在壳层中 Pt 负载量最低且粒径最小的情况下。比活性的提高是由于可用于乙醇氧化反应的纳米颗粒数量增加,以及 Pt 原子在 Pb@Pt/C 中表面拉伸应变的影响。与 Pt/C 相比,负载量为 35%和 50%wt(分别为 Pb@Pt 和 Pb@Pt/C)的催化剂活性较低,这可以解释为这些催化剂得到的粒径较大。此外,Pb@Pt/C 催化剂具有较高的电化学稳定性,在直接乙醇燃料电池系统中应比整体 Pt 催化剂更稳定。这是因为 Pb@Pt/C 中的 Pt 壳层的化学势( < 0)低于 Pt/C 和其他研究的核壳催化剂;因此,降低了其溶解的趋势。因此,开发的核壳纳米结构是一种潜在的高性能阳极催化剂候选材料,可用于直接乙醇燃料电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验