Suppr超能文献

利用人工神经网络分析烟气脱硫石膏的抗压强度。

Analysis the Compressive Strength of Flue Gas Desulfurization Gypsum Using Artificial Neural Network.

机构信息

Department of Architectural Engineering, Research Center of Industrial Technology, Chonbuk National University, Jeonju, Jellabukdo, 54896, Republic of Korea.

School of Electronics & Information Engineering, Chonbuk National University, Jeonju, Jellabukdo, 54896, Republic of Korea.

出版信息

J Nanosci Nanotechnol. 2020 Jan 1;20(1):485-490. doi: 10.1166/jnn.2020.17235.

Abstract

Flue Gas Desulfurization (FGD) gypsum is generated as a byproduct for the desulfurization process, using limestone powder as an absorber in the coal-fired power plants. The FGD gypsum is high in calcium sulfate concentrations and has few impurities. Its quality is not far behind compared to natural gypsum. An artificial neural networks (ANN) study was carried out to analyze the compressive strength of the FGD gypsum mortar. The mortar mixture parameters were eight partial FGD gypsum replacements. The compressive strengths of the cured specimens were measured. The ANN model was constructed, trained and tested using these data. The data used in the ANN model was arranged in a format of input parameters that cover the cement, FGD gypsum, age of samples, and an output parameter, which is compressive strength. This study showed that the ANN can be an approach for analyzing the compressive strength of the FGD gypsum mortar using the ingredients as input parameters.

摘要

烟气脱硫 (FGD) 石膏是燃煤电厂脱硫过程中的副产品,使用石灰石粉作为吸收剂产生。FGD 石膏的硫酸钙浓度较高,杂质较少。其质量与天然石膏相比相差无几。本研究采用人工神经网络 (ANN) 对 FGD 石膏灰浆的抗压强度进行分析。灰浆混合物的参数为 8 个部分 FGD 石膏替代物。测量了养护试件的抗压强度。使用这些数据构建、训练和测试了 ANN 模型。ANN 模型中使用的数据排列格式为输入参数,涵盖水泥、FGD 石膏、样品龄期和输出参数,即抗压强度。本研究表明,ANN 可以作为一种方法,使用成分作为输入参数来分析 FGD 石膏灰浆的抗压强度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验