Suppr超能文献

结构、生物合成和血清学交叉反应阐明肺炎链球菌 16 血清型荚膜多糖。

Structural, Biosynthetic, and Serological Cross-Reactive Elucidation of Capsular Polysaccharides from Streptococcus pneumoniae Serogroup 16.

机构信息

Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.

Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.

出版信息

J Bacteriol. 2019 Sep 20;201(20). doi: 10.1128/JB.00453-19. Print 2019 Oct 15.

Abstract

Capsular polysaccharides (CPS) are crucial virulence factors of The previously unknown CPS structures of the pneumococcal serogroup 16 (serotypes 16F and 16A) were thoroughly elucidated by nuclear magnetic resonance (NMR) spectroscopy and verified by chemical analysis. The following repeat unit structures were determined: 16F, -3)-α-l-Rha-[4-P-1-Gro]-(1-3)-α-d-Glc-[(6-P-1)-Gro]-(1-3)-β-l-Rha-[2-OAc]-(1-4)-β-d-Glc-(1-; 16A, -3)-β-d-Gal-[2-OAc (70%)]-(1-3)-α-l-Rha-(1-2)-α-l-Rha-(1-3)-α-d-Gal-[(6-P-1)-Gro]-(1-3)-β-d-Gal-(1-4)-β-d-Glc-(1- (OAc, O-acetyl substitution; P-1-Gro, glycerol-1-phosphate substitution) A further analysis of CPS biosynthesis of serotypes 16F and 16A, in conjunction with published gene bioinformatics analysis and structures of related serotypes, revealed presumable specific function of glycosyltransferase, acetyltransferase, phosphotransferase, and polymerase. The functions of glycosyltransferases WcxN and WcxT were proposed for the first time, and they were assigned to catalyze linkage of α-l-Rha-(1-3)-α-d-Glc and α-l-Rha-(1-2)-α-l-Rha, respectively. Furthermore, since serotype 16F was genetically close to serogroup 28, cross-reactions between serogroup 16 and serogroup 28 were studied using diagnostic antisera, which provided further understanding of antigenic properties of CPS and diagnostic antisera. Interestingly, serotype 16F cross-reacted with factor antisera 28b and 11c. Meanwhile, serotype 16A cross-reacted with factor antiserum 11c. The vaccine pressure against could result in a change of prevalence in carriage and invasive serotypes. As such, it is necessary to monitor the distribution to achieve successful vaccination of the population, and similarly, it is important to increase the knowledge of even the currently less prevalent serotypes. The CPS are vital for the virulence of the pathogen, and antigenic properties of CPS are based on the structure. Consequently, a better understanding of the structure, biosynthesis, and serology of the capsular polysaccharides can be of great importance toward developing future diagnostic tools and vaccines.

摘要

荚膜多糖 (CPS) 是肺炎球菌血清群 16 型(血清型 16F 和 16A)的重要毒力因子。通过核磁共振 (NMR) 光谱和化学分析彻底阐明了先前未知的 CPS 结构。确定了以下重复单元结构:16F,-3)-α-l-Rha-[4-P-1-Gro]-(1-3)-α-d-Glc-[(6-P-1)-Gro]-(1-3)-β-l-Rha-[2-OAc]-(1-4)-β-d-Glc-(1-; 16A,-3)-β-d-Gal-[2-OAc (70%)]-(1-3)-α-l-Rha-(1-2)-α-l-Rha-(1-3)-α-d-Gal-[(6-P-1)-Gro]-(1-3)-β-d-Gal-(1-4)-β-d-Glc-(1-(OAc,O-乙酰化取代;P-1-Gro,甘油-1-磷酸取代)。进一步结合已发表的基因生物信息学分析和相关血清型的结构,分析了血清型 16F 和 16A 的 CPS 生物合成,推测了糖基转移酶、乙酰基转移酶、磷酸转移酶和聚合酶的特定功能。首次提出了糖基转移酶 WcxN 和 WcxT 的功能,并分别将其分配为催化α-l-Rha-(1-3)-α-d-Glc 和α-l-Rha-(1-2)-α-l-Rha 的连接。此外,由于血清型 16F 在遗传学上与血清群 28 密切相关,因此使用诊断抗血清研究了血清群 16 和血清群 28 之间的交叉反应,这进一步了解了 CPS 和诊断抗血清的抗原特性。有趣的是,血清型 16F 与因子抗血清 28b 和 11c 发生交叉反应。同时,血清型 16A 与因子抗血清 11c 发生交叉反应。针对 的疫苗压力可能导致携带和侵袭性血清型的流行率发生变化。因此,有必要监测其分布情况,以实现人群的成功接种,同样重要的是,要增加对目前流行率较低的血清型的了解。CPS 对病原体的毒力至关重要,CPS 的抗原特性基于其结构。因此,更好地了解荚膜多糖的结构、生物合成和血清学特性对于开发未来的诊断工具和疫苗具有重要意义。

相似文献

2
Structural, biosynthetic and serological cross-reactive elucidation of capsular polysaccharides from Streptococcus pneumoniae serogroup 28.
Carbohydr Polym. 2021 Feb 15;254:117323. doi: 10.1016/j.carbpol.2020.117323. Epub 2020 Nov 4.
5
Discovery and description of a new serogroup 7 Streptococcus pneumoniae serotype, 7D, and structural analysis of 7C and 7D.
Carbohydr Res. 2018 Jun 30;463:24-31. doi: 10.1016/j.carres.2018.04.011. Epub 2018 Apr 23.
8
NMR structural analysis of the capsular polysaccharide from Streptococcus pneumoniae serotype 6C.
Carbohydr Res. 2012 Apr 1;351:98-107. doi: 10.1016/j.carres.2012.01.017. Epub 2012 Jan 28.

引用本文的文献

1
Antioxidant and anticancer properties of fucoidan isolated from Saccharina Japonica brown algae.
Sci Rep. 2025 Mar 15;15(1):8962. doi: 10.1038/s41598-025-94312-7.
2
Update on the evolving landscape of pneumococcal capsule types: new discoveries and way forward.
Clin Microbiol Rev. 2025 Mar 13;38(1):e0017524. doi: 10.1128/cmr.00175-24. Epub 2025 Jan 29.
3
First Report on the ( Biotype I) DSM 13808 Exopolysaccharide Structure.
Int J Mol Sci. 2022 Oct 5;23(19):11797. doi: 10.3390/ijms231911797.

本文引用的文献

1
Discovery and description of a new serogroup 7 Streptococcus pneumoniae serotype, 7D, and structural analysis of 7C and 7D.
Carbohydr Res. 2018 Jun 30;463:24-31. doi: 10.1016/j.carres.2018.04.011. Epub 2018 Apr 23.
3
WciG -Acetyltransferase Functionality Differentiates Pneumococcal Serotypes 35C and 42.
J Clin Microbiol. 2017 Sep;55(9):2775-2784. doi: 10.1128/JCM.00822-17. Epub 2017 Jun 28.
5
Discovery of Novel Pneumococcal Serotype 35D, a Natural WciG-Deficient Variant of Serotype 35B.
J Clin Microbiol. 2017 May;55(5):1416-1425. doi: 10.1128/JCM.00054-17. Epub 2017 Feb 15.
6
Structural characterization of the lipoteichoic acid isolated from Staphylococcus sciuri W620.
Carbohydr Res. 2016 Jul 22;430:44-47. doi: 10.1016/j.carres.2016.04.026. Epub 2016 May 4.
7
Pneumococcal Capsules and Their Types: Past, Present, and Future.
Clin Microbiol Rev. 2015 Jul;28(3):871-99. doi: 10.1128/CMR.00024-15.
8
Differences in serious clinical outcomes of infection caused by specific pneumococcal serotypes among adults.
Vaccine. 2014 May 1;32(21):2399-405. doi: 10.1016/j.vaccine.2014.02.096. Epub 2014 Mar 14.
9
Spectrum of pneumococcal serotype 11A variants results from incomplete loss of capsule O-acetylation.
J Clin Microbiol. 2014 Mar;52(3):758-65. doi: 10.1128/JCM.02695-13. Epub 2013 Dec 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验