Yan Chong, Xu Rui, Qin Jin-Lei, Yuan Hong, Xiao Ye, Xu Lei, Huang Jia-Qi
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Angew Chem Int Ed Engl. 2019 Oct 21;58(43):15235-15238. doi: 10.1002/anie.201908874. Epub 2019 Aug 27.
Lithium metal is used to achieve high-energy-density batteries due to its large theoretical capacity and low negative electrochemical potential. The introduction of quasi-solid electrolytes simultaneously overcomes the safety problems induced by the liquid electrolytes and the high interfacial resistance issues confronted by all solid-state electrolytes. In-depth investigations involving interfacial behaviors in quasi-solid lithium metal batteries are inadequate. Herein an ultrathin Li OCl quasi-solid-state electrolyte layer (500 nm thickness) is used to cover a lithium anode. The polarization of the anode is remarkably reduced by introducing the Li OCl quasi-solid-state electrolyte. In contrast to the decomposition of solvents in a standard electrolyte (EC-DEC,1.0 m LiPF ), the established quasi-solid-state electrolyte interfaces can significantly inhibit the decomposition of solvents when the cut-off voltage is 4.5 V.
锂金属因其高理论容量和低负电化学势而被用于制造高能量密度电池。准固态电解质的引入同时克服了液体电解质引发的安全问题以及全固态电解质面临的高界面电阻问题。关于准固态锂金属电池界面行为的深入研究还不够充分。在此,使用了一层超薄的LiOCl准固态电解质层(厚度为500 nm)来覆盖锂阳极。通过引入LiOCl准固态电解质,阳极的极化显著降低。与标准电解质(EC-DEC,1.0 m LiPF)中溶剂的分解情况相比,当截止电压为4.5 V时,所形成的准固态电解质界面能够显著抑制溶剂的分解。