Pender Joshua P, Guerrera Joseph V, Wygant Bryan R, Weeks Jason A, Ciufo Ryan A, Burrow James N, Walk Mitchell F, Rahman Mohammad Z, Heller Adam, Mullins C Buddie
ACS Nano. 2019 Aug 27;13(8):9279-9291. doi: 10.1021/acsnano.9b03861. Epub 2019 Aug 12.
We describe here the metal-templated transformation of carbon nitride (CN) into nitrogen-containing carbons as anodes for Li-ion batteries (LIBs). Changing the template from the carbon- and nitrogen-immiscible Cu powder to the carbon- and nitrogen-miscible Fe powder yields different carbons; while Fe templating produces graphitized carbons of low (<10%) nitrogen content and moderate pore volume, Cu templating yields high defect-density carbons of high (32-24%) nitrogen content and larger pore volume. The Li storage capacity of the high nitrogen content and larger pore volume Cu-templated carbons exceeds that of the more graphitic Fe-templated carbons due to added contribution from Li insertion/extraction from pores and defects and to reversible faradaic Li reaction with nitrogen atoms. The Cu-templated carbon annealed at 750 °C delivers the highest specific capacity of 900 mAh g at 0.1 A g and 275 mAh g at 20 A g, while also achieving a 96% capacity retention after 2000 cycles at 2 A g. The fabrication of higher mass loading electrodes (4.5 mg cm) provided a maximum areal capacity of 2.6 mAh cm at 0.45 mA cm (0.1 A g), comparable to the capacities of commercial LIB cells and favorable compared to other reported carbon materials.
我们在此描述了将氮化碳(CN)通过金属模板法转化为含氮碳材料作为锂离子电池(LIBs)的阳极。将模板从与碳和氮不混溶的铜粉换成与碳和氮混溶的铁粉会产生不同的碳材料;铁模板法生成的是氮含量低(<10%)且孔容适中的石墨化碳,而铜模板法生成的是氮含量高(32 - 24%)且孔容更大、缺陷密度高的碳。高氮含量且孔容更大的铜模板法碳材料的锂存储容量超过了石墨化程度更高的铁模板法碳材料,这是因为锂在孔隙和缺陷中的嵌入/脱出以及锂与氮原子发生可逆的法拉第反应增加了容量贡献。在750℃退火的铜模板法碳材料在0.1 A g时的比容量最高可达900 mAh g,在20 A g时为275 mAh g,同时在2 A g下循环2000次后容量保持率达到96%。制备更高质量负载的电极(4.5 mg cm)在0.45 mA cm(0.1 A g)时的最大面积容量为2.6 mAh cm,与商用LIB电池的容量相当,且优于其他已报道的碳材料。