Pantelias Antonio, Karachristou Ioanna, Georgakilas Alexandros G, Terzoudi Georgia I
Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15341 Agia Paraskevi, Greece.
DNA Damage Laboratory, Physics Department, School of Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece.
Cancers (Basel). 2019 Aug 6;11(8):1123. doi: 10.3390/cancers11081123.
The discovery of chromothripsis in cancer genomes challenges the long-standing concept of carcinogenesis as the result of progressive genetic events. Despite recent advances in describing chromothripsis, its mechanistic origin remains elusive. The prevailing conception is that it arises from a massive accumulation of fragmented DNA inside micronuclei (MN), whose defective nuclear envelope ruptures or leads to aberrant DNA replication, before main nuclei enter mitosis. An alternative hypothesis is that the premature chromosome condensation (PCC) dynamics in asynchronous micronucleated cells underlie chromosome shattering in a single catastrophic event, a hallmark of chromothripsis. Specifically, when main nuclei enter mitosis, premature chromatin condensation provokes the shattering of chromosomes entrapped inside MN, if they are still undergoing DNA replication. To test this hypothesis, the agent RO-3306, a selective ATP-competitive inhibitor of CDK1 that promotes cell cycle arrest at the G2/M boundary, was used in this study to control the degree of cell cycle asynchrony between main nuclei and MN. By delaying the entrance of main nuclei into mitosis, additional time was allowed for the completion of DNA replication and duplication of chromosomes inside MN. We performed interphase cytogenetic analysis using asynchronous micronucleated cells generated by exposure of human lymphocytes to γ-rays, and heterophasic multinucleated Chinese hamster ovary (CHO) cells generated by cell fusion procedures. Our results demonstrate that the PCC dynamics during asynchronous mitosis in micronucleated or multinucleated cells are an important determinant of chromosome shattering and may underlie the mechanistic origin of chromothripsis.
癌症基因组中染色体碎裂现象的发现,挑战了长期以来认为致癌作用是渐进性基因事件结果的观念。尽管最近在描述染色体碎裂方面取得了进展,但其机制起源仍然难以捉摸。普遍的观点是,它源于微核(MN)内碎片化DNA的大量积累,在主核进入有丝分裂之前,微核有缺陷的核膜破裂或导致异常的DNA复制。另一种假说是,异步微核化细胞中的早熟染色体凝聚(PCC)动态是单一灾难性事件中染色体破碎的基础,这是染色体碎裂的一个标志。具体而言,当主核进入有丝分裂时,如果MN内的染色体仍在进行DNA复制,早熟的染色质凝聚会引发这些染色体的破碎。为了验证这一假说,本研究使用了RO-3306,一种选择性的CDK1的ATP竞争性抑制剂,它能促进细胞周期停滞在G2/M边界,以控制主核和MN之间的细胞周期异步程度。通过延迟主核进入有丝分裂的时间,为MN内DNA复制的完成和染色体的加倍留出了额外的时间。我们使用人淋巴细胞暴露于γ射线产生的异步微核化细胞,以及通过细胞融合程序产生的异相多核中国仓鼠卵巢(CHO)细胞进行了间期细胞遗传学分析。我们的结果表明,微核化或多核化细胞中异步有丝分裂期间的PCC动态是染色体破碎的一个重要决定因素,可能是染色体碎裂机制起源的基础。