Suppr超能文献

通过大肠杆菌中植物螯合肽的辅助作用提高 AuPd 核壳纳米粒子的生物合成用于催化增强化学发光和苯甲醇氧化。

Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation.

机构信息

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; The Open University of Japan, 2-11 Wakaba, Mishima-ku, Chiba-city, Chiba 261-8586, Japan.

出版信息

J Inorg Biochem. 2019 Oct;199:110795. doi: 10.1016/j.jinorgbio.2019.110795. Epub 2019 Jul 31.

Abstract

In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-shell NPs was obviously enhanced due to insertion of the gene sequence of Arabidopsis thaliana phytochelatin synthase (AtPCS1) to a plasmid vector (pET-28b) of Escherichia coli (E. coli). The obtained Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (AtPCS1-E. coli) could generate phytochelatins (PCs, (γ-Glu-Cys)-Gly, n > 1) for efficient capture and enrichment of Au. The component and morphology of AuPd core-shell NPs were checked through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). Catalytic CL (in HO-luminol system) and BAO (in HO-benzyl alcohol system) effect with different experimental conditions were examined, respectively. These results revealed that multifunctional PCs could effectively facilitate biosynthetic process of AuPd core-shell NPs with better distribution, higher yield and lower cost while stronger CL intensity and higher conversion could be obtained for further quantitative analysis and application.

摘要

本工作通过拟南芥谷胱甘肽合成酶修饰的大肠杆菌(Au-Pd/AtPCS1-E. coli)生物合成了金钯核壳纳米粒子(NPs),该纳米粒子具有催化增强化学发光(CL)和苯甲醇氧化(BAO)活性。由于插入了拟南芥谷胱甘肽合成酶(AtPCS1)的基因序列到大肠杆菌(E. coli)的质粒载体(pET-28b)中,因此明显增强了金钯核壳 NPs 的生物合成。所得的拟南芥谷胱甘肽合成酶修饰的大肠杆菌(AtPCS1-E. coli)可以生成谷胱甘肽(PCs,(γ-Glu-Cys)-Gly,n>1),用于有效捕获和富集 Au。通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和能谱仪(EDS)检查了 AuPd 核壳 NPs 的成分和形态。分别考察了不同实验条件下的催化 CL(在 HO-鲁米诺体系中)和 BAO(在 HO-苯甲醇体系中)效应。这些结果表明,多功能 PCs 可以有效地促进 AuPd 核壳 NPs 的生物合成过程,具有更好的分布、更高的产量和更低的成本,同时可以获得更强的 CL 强度和更高的转化率,从而进行进一步的定量分析和应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验