Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; The Open University of Japan, 2-11 Wakaba, Mishima-ku, Chiba-city, Chiba 261-8586, Japan.
J Inorg Biochem. 2019 Oct;199:110795. doi: 10.1016/j.jinorgbio.2019.110795. Epub 2019 Jul 31.
In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-shell NPs was obviously enhanced due to insertion of the gene sequence of Arabidopsis thaliana phytochelatin synthase (AtPCS1) to a plasmid vector (pET-28b) of Escherichia coli (E. coli). The obtained Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (AtPCS1-E. coli) could generate phytochelatins (PCs, (γ-Glu-Cys)-Gly, n > 1) for efficient capture and enrichment of Au. The component and morphology of AuPd core-shell NPs were checked through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). Catalytic CL (in HO-luminol system) and BAO (in HO-benzyl alcohol system) effect with different experimental conditions were examined, respectively. These results revealed that multifunctional PCs could effectively facilitate biosynthetic process of AuPd core-shell NPs with better distribution, higher yield and lower cost while stronger CL intensity and higher conversion could be obtained for further quantitative analysis and application.
本工作通过拟南芥谷胱甘肽合成酶修饰的大肠杆菌(Au-Pd/AtPCS1-E. coli)生物合成了金钯核壳纳米粒子(NPs),该纳米粒子具有催化增强化学发光(CL)和苯甲醇氧化(BAO)活性。由于插入了拟南芥谷胱甘肽合成酶(AtPCS1)的基因序列到大肠杆菌(E. coli)的质粒载体(pET-28b)中,因此明显增强了金钯核壳 NPs 的生物合成。所得的拟南芥谷胱甘肽合成酶修饰的大肠杆菌(AtPCS1-E. coli)可以生成谷胱甘肽(PCs,(γ-Glu-Cys)-Gly,n>1),用于有效捕获和富集 Au。通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和能谱仪(EDS)检查了 AuPd 核壳 NPs 的成分和形态。分别考察了不同实验条件下的催化 CL(在 HO-鲁米诺体系中)和 BAO(在 HO-苯甲醇体系中)效应。这些结果表明,多功能 PCs 可以有效地促进 AuPd 核壳 NPs 的生物合成过程,具有更好的分布、更高的产量和更低的成本,同时可以获得更强的 CL 强度和更高的转化率,从而进行进一步的定量分析和应用。