Suppr超能文献

Interaction of Cationic, Anionic, and Nonionic Macroraft Homo- and Copolymers with Laponite Clay.

作者信息

Chaparro Thaíssa de Camargo, Silva Rodrigo Duarte, Monteiro Igor Stefanichen, Barros-Timmons A, Giudici Reinaldo, Martins Dos Santos Amilton, Bourgeat-Lami Elodie

机构信息

Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43, Bvd du 11 Novembre 1918 , F-69616 Villeurbanne , France.

Engineering School of Lorena , University of São Paulo , 12.602-810 Lorena , SP , Brazil.

出版信息

Langmuir. 2019 Sep 3;35(35):11512-11523. doi: 10.1021/acs.langmuir.9b01987. Epub 2019 Aug 22.

Abstract

The functionalization of Laponite RD platelets with different cationic, anionic, and nonionic homo- and copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) has been investigated. The effective interaction of the macromolecular RAFT agents (macroRAFTs) with the inorganic particles is known to be of crucial importance for the successful coating of minerals with polymers via RAFT-mediated emulsion polymerization to produce polymer-encapsulated inorganic particles. The macroRAFT agents synthesized in the present work contain carefully selected reinitiating R groups, which bear either ionizable tertiary amine or quaternary ammonium moieties (from 2-(dimethylamino)ethyl methacrylate, DMAEMA), negatively charged acrylic acid (AA) repeat units, or neutral polyethylene glycol (PEG) side chains, and are capable of interacting with Laponite via different adsorption mechanisms. The equilibrium adsorption of these RAFT (co)polymers was investigated by the plotting of adsorption isotherms, and either L-type or H-type curves were obtained. The hydrophobicity of the macroRAFT was shown to promote adsorption, as did the pending configuration of the PEG block. Charge repulsion between AA and the negatively charged surface of Laponite at pH 7.5, on the other hand, was prejudicial for adsorption, while the strong electrostatic interaction between the cationic DMAEMA molecules and the Laponite surface led to high-affinity-type curves.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验