Suppr超能文献

BindSpace 通过大规模序列嵌入来解码转录因子结合信号。

BindSpace decodes transcription factor binding signals by large-scale sequence embedding.

机构信息

Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA.

出版信息

Nat Methods. 2019 Sep;16(9):858-861. doi: 10.1038/s41592-019-0511-y. Epub 2019 Aug 12.

Abstract

The decoding of transcription factor (TF) binding signals in genomic DNA is a fundamental problem. Here we present a prediction model called BindSpace that learns to embed DNA sequences and TF labels into the same space. By training on binding data from hundreds of TFs and embedding over 1 M DNA sequences, BindSpace achieves state-of-the-art multiclass binding prediction performance, in vitro and in vivo, and can distinguish between signals of closely related TFs.

摘要

转录因子(TF)结合信号在基因组 DNA 中的解码是一个基本问题。在这里,我们提出了一个名为 BindSpace 的预测模型,它可以学习将 DNA 序列和 TF 标签嵌入到同一个空间中。通过对来自数百个 TF 的结合数据进行训练,并嵌入超过 100 万个 DNA 序列,BindSpace 在体外和体内实现了最先进的多类结合预测性能,并且可以区分密切相关的 TF 的信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba2/6717532/cf47a79fb635/nihms-1534332-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验