Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China.
Adv Mater. 2019 Oct;31(40):e1903683. doi: 10.1002/adma.201903683. Epub 2019 Aug 18.
Platinum is the most effective metal for a wide range of catalysis reactions, but it fails in the formic acid electrooxidation test and suffers from severe carbon monoxide poisoning. Developing highly active and stable catalysts that are capable of oxidizing HCOOH directly into CO remains challenging for commercialization of direct liquid fuel cells. A new class of PtSnBi intermetallic nanoplates is synthesized to boost formic acid oxidation, which greatly outperforms binary PtSn and PtBi intermetallic, benefiting from the synergism of chosen three metals. In particular, the best catalyst, atomically ordered Pt Sn Bi nanoplates, exhibits an ultrahigh mass activity of 4394 mA mg Pt and preserves 78% of the initial activity after 4000 potential cycles, which make it a state-of-the-art catalyst toward formic acid oxidation. Density functional theory calculations reveal that the electronic and geometric effects in PtSnBi intermetallic nanoplates help suppress CO* formation and optimize dehydrogenation steps.
铂是广泛的催化反应中最有效的金属,但它在甲酸电氧化测试中失败了,并且容易受到严重的一氧化碳中毒。开发能够将 HCOOH 直接氧化成 CO 的高活性和稳定的催化剂,对于直接液体燃料电池的商业化仍然具有挑战性。合成了一类新的 PtSnBi 金属间化合物纳米板,以促进甲酸氧化,这大大优于二元 PtSn 和 PtBi 金属间化合物,得益于所选三种金属的协同作用。特别是,最佳催化剂,原子有序的 PtSnBi 纳米板,表现出超高的质量活性 4394 mA mgPt,并在 4000 个电位循环后保留初始活性的 78%,使其成为甲酸氧化的最先进的催化剂。密度泛函理论计算表明,PtSnBi 金属间化合物纳米板中的电子和几何效应有助于抑制 CO*的形成和优化脱氢步骤。