Suppr超能文献

使用定域活性空间自洽场方法研究金属基化合物中的自旋态排序

Spin-State Ordering in Metal-Based Compounds Using the Localized Active Space Self-Consistent Field Method.

作者信息

Pandharkar Riddhish, Hermes Matthew R, Cramer Christopher J, Gagliardi Laura

机构信息

Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , United States.

出版信息

J Phys Chem Lett. 2019 Sep 19;10(18):5507-5513. doi: 10.1021/acs.jpclett.9b02077. Epub 2019 Sep 4.

Abstract

Quantitatively accurate calculations for spin-state ordering in transition-metal complexes typically demand a robust multiconfigurational treatment. The poor scaling of such methods with increasing size makes them impractical for large, strongly correlated systems. Density matrix embedding theory (DMET) is a fragmentation approach that can be used to specifically address this challenge. The single-determinantal bath framework of DMET is applicable in many situations, but it has been shown to perform poorly for molecules characterized by strong correlation when a multiconfigurational self-consistent field solver is used. To ameliorate this problem, the localized active space self-consistent field (LASSCF) method was recently described. In this work, LASSCF is applied to predict spin-state energetics in mono- and di-iron systems, and we show that the model offers an accuracy equivalent to that of CASSCF but at a substantially lower computational cost. Performance as a function of basis set and active space is also examined.

摘要

对于过渡金属配合物中的自旋态排序进行定量精确计算通常需要强大的多组态处理方法。这类方法随着体系规模增大而扩展性不佳,这使得它们对于大型、强关联体系不切实际。密度矩阵嵌入理论(DMET)是一种可用于专门应对这一挑战的碎片化方法。DMET的单行列式浴框架在许多情况下都适用,但已表明当使用多组态自洽场求解器时,对于具有强关联特征的分子,该框架表现不佳。为改善这一问题,最近描述了局域活性空间自洽场(LASSCF)方法。在这项工作中,LASSCF被用于预测单铁和双铁体系中的自旋态势能,并且我们表明该模型提供了与完全活性空间自洽场(CASSCF)相当的精度,但计算成本却大幅降低。还研究了作为基组和活性空间函数的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验