Department of Chemistry , University of Nebraska-Lincoln , 409C Hamilton Hall , P.O. Box 880304, Lincoln , Nebraska 68588 , United States.
Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.
ACS Appl Mater Interfaces. 2019 Sep 11;11(36):33452-33457. doi: 10.1021/acsami.9b10454. Epub 2019 Aug 30.
Silicone elastomers are used in a variety of "stretchable" technologies (e.g., wearable electronics and soft robotics) that require the elastomeric components to accommodate varying magnitudes of mechanical stress during operation; however, there is limited understanding of how mechanical stress influences the surface chemistry of these elastomeric components despite the potential importance of this property with regards to overall function. In this study, plasma-oxidized silicone (poly(dimethylsiloxane)) films were systematically subjected to various amounts of tensile stress and the resulting surface chemical changes were monitored using contact angle measurements, X-ray photoelectron spectroscopy, and gas chromatography-mass spectrometry. Understanding the influence of mechanical stress on these materials made possible the development of a facile method for the rapid, on-demand switching of surface wettability and the generation of surface wettability patterns and gradients. The use of mechanical stress to control surface wettability is broadly applicable to the fields of microfluidics, soft robotics, printing, and to the design of adaptable materials and sensors.
硅橡胶弹性体被广泛应用于各种“可拉伸”技术(如可穿戴电子设备和软机器人)中,这些技术要求弹性体组件在运行过程中能够适应不同程度的机械应力;然而,尽管这种性能对于整体功能至关重要,但对于机械应力如何影响这些弹性体组件的表面化学性质,人们的了解还很有限。在这项研究中,等离子体氧化硅(聚二甲基硅氧烷)薄膜被系统地施加不同程度的拉伸应力,并使用接触角测量、X 射线光电子能谱和气相色谱-质谱联用技术监测由此产生的表面化学变化。了解机械应力对这些材料的影响,使得开发一种简便的方法成为可能,这种方法可以快速、按需切换表面润湿性,并产生表面润湿性图案和梯度。利用机械应力来控制表面润湿性广泛适用于微流控、软机器人、印刷以及适应性材料和传感器的设计领域。