Dept. de Ingeniería Química, Univ. Nacional del Sur (UNS), Bahía Blanca, Argentina.
Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina.
J Food Sci. 2019 Sep;84(9):2549-2561. doi: 10.1111/1750-3841.14762. Epub 2019 Aug 21.
The aim of this study was to investigate the effects of monoglycerides (MG) concentration (3, 4.5, and 6 wt%), cooling rate (0.1 and 10 °C/min), and high-intensity ultrasound (HIU) application on physical properties of oleogels from MG and high oleic sunflower oil. Microstructure, melting profile, elasticity (G'), and solid fat content (SFC) were measured immediately after preparation of samples (t = 0) and after 24 hr of storage at 25 °C. Samples' textural properties (hardness, adhesiveness, and cohesiveness) and oil binding capacity (OBC) were evaluated after 24 hr at 25 °C. In general, samples became less elastic over time. Slow cooling rate resulted in lower G' after 24 hr compared to the ones obtained using 10 °C/min. Network OBC was improved by increasing MG concentration and cooling rate, and by applying HIU. After storage, oleogel melting enthalpy increased with MG concentration. In general, this behavior was not correlated with an increase in SFC. An improvement in the network structure was generally reached with the increase in cooling rate, according to texture and rheology results, for both sonicated and nonsonicated conditions. At the highest MG concentration, HIU application was more efficient at increasing OBC and hardness of the network at 0.1 °C/min. Microscopy images showed that the oleogels microstructure was changed as a consequence of HIU application and cooling rate, evidencing smaller crystals both in sonicated and faster cooled samples. Obtained results demonstrate that cooling rate, MG concentration, and HIU can be used satisfactorily to tailor physical properties of MG oleogels. PRACTICAL APPLICATION: Oleogels have been studied in the last years as semisolid fat replacers in food products. Cooling rate is an important processing parameter in the oleogel preparation because it affects their final physical properties, while high-intensity ultrasound (HIU) is a relatively novel technique to tailor lipid properties. This study is focused on the application of a slow/fast cooling rate in combination with/without HIU treatment at different monoglycerides and high oleic sunflower oil mixtures as a successful strategy to obtain oleogels with different physical properties and with potential applications in the food industry, such as fat substitutes in bakery.
本研究旨在探讨单甘酯(MG)浓度(3、4.5 和 6wt%)、冷却速率(0.1 和 10°C/min)和高强度超声(HIU)应用对 MG 和高油酸葵花籽油制成的油凝胶物理性质的影响。在样品制备后立即(t=0)和在 25°C 下储存 24 小时后,测量微观结构、熔融曲线、弹性(G')和固态脂肪含量(SFC)。在 25°C 下储存 24 小时后,评估样品的质地特性(硬度、粘性和内聚性)和油结合能力(OBC)。一般来说,随着时间的推移,样品的弹性会降低。与使用 10°C/min 相比,冷却速率较慢会导致 24 小时后的 G'值降低。通过增加 MG 浓度和冷却速率以及应用 HIU,可以提高网络 OBC。储存后,MG 浓度的增加会导致油凝胶的熔融焓增加。一般来说,这种行为与 SFC 的增加无关。根据质地和流变学结果,对于超声和非超声条件,随着冷却速率的增加,网络结构得到改善。在最高 MG 浓度下,在 0.1°C/min 下,HIU 的应用更有效地提高了网络的 OBC 和硬度。显微镜图像显示,由于 HIU 的应用和冷却速率的影响,油凝胶的微观结构发生了变化,在超声和快速冷却的样品中,晶体都变小了。研究结果表明,冷却速率、MG 浓度和 HIU 可用于满足调整 MG 油凝胶物理性质的要求。 实际应用:油凝胶在过去几年中作为食品产品的半固体脂肪替代品进行了研究。冷却速率是油凝胶制备中的一个重要加工参数,因为它会影响其最终的物理性质,而高强度超声(HIU)是一种用于调整脂质性质的相对较新的技术。本研究重点研究了在不同的单甘酯和高油酸葵花籽油混合物中,结合/不结合 HIU 处理,采用缓慢/快速冷却速率作为获得具有不同物理性质的油凝胶的成功策略,这些油凝胶具有潜在的应用前景,例如在烘焙食品中作为脂肪替代品。