Suppr超能文献

一种用于描述药物结合过程的集成马尔可夫状态模型和路径元动力学方法。

An Integrated Markov State Model and Path Metadynamics Approach To Characterize Drug Binding Processes.

机构信息

Department of Pharmacy and Biotechnology, Alma Mater Studiorum , Università di Bologna , Via Belmeloro 6 , I-40126 Bologna , Italy.

Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0340 , United States.

出版信息

J Chem Theory Comput. 2019 Oct 8;15(10):5689-5702. doi: 10.1021/acs.jctc.9b00450. Epub 2019 Sep 5.

Abstract

Unveiling the mechanistic features of drug-target binding is of central interest in biophysics and drug discovery. Herein, we address this challenge by combining two major computational approaches, namely, Molecular Dynamics (MD) simulations and Markov State Models (MSM), with a Path Collective Variables (PCVs) description coupled with metadynamics. We apply our methodology to reconstruct the binding process of the antagonist alprenolol to the β-adrenergic receptor, a well-established pharmaceutical target. The devised protocol allowed us to estimate the binding free energy and identify the minimum free energy path leading to the protein-ligand complex. In summary, we show that MSM and PCVs can be efficiently integrated to shed light upon mechanistic and energetic details underlying complex recognition processes in biological systems.

摘要

揭示药物-靶标结合的力学特征是生物物理学和药物发现的核心关注点。在此,我们通过结合两种主要的计算方法,即分子动力学(MD)模拟和马尔可夫状态模型(MSM),以及路径集体变量(PCVs)描述和元动力学,来应对这一挑战。我们将我们的方法应用于重建拮抗剂阿普洛尔与β-肾上腺素能受体的结合过程,β-肾上腺素能受体是一个成熟的药物靶点。所设计的方案使我们能够估计结合自由能,并确定导致蛋白质-配体复合物的最小自由能路径。总之,我们表明 MSM 和 PCVs 可以有效地集成,以揭示生物系统中复杂识别过程的力学和能量细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验