IEEE Trans Vis Comput Graph. 2020 Jan;26(1):729-738. doi: 10.1109/TVCG.2019.2934541. Epub 2019 Aug 22.
We present a non-uniform recursive sampling technique for multi-class scatterplots, with the specific goal of faithfully presenting relative data and class densities, while preserving major outliers in the plots. Our technique is based on a customized binary kd-tree, in which leaf nodes are created by recursively subdividing the underlying multi-class density map. By backtracking, we merge leaf nodes until they encompass points of all classes for our subsequently applied outlier-aware multi-class sampling strategy. A quantitative evaluation shows that our approach can better preserve outliers and at the same time relative densities in multi-class scatterplots compared to the previous approaches, several case studies demonstrate the effectiveness of our approach in exploring complex and real world data.
我们提出了一种用于多类散点图的非均匀递归抽样技术,其特定目标是忠实呈现相对数据和类密度,同时保留图中的主要异常值。我们的技术基于定制的二进制 kd-树,其中叶节点通过递归地细分底层多类密度图来创建。通过回溯,我们合并叶节点,直到它们包含我们随后应用的异常值感知多类抽样策略的所有类别的点。定量评估表明,与之前的方法相比,我们的方法可以更好地保留多类散点图中的异常值和相对密度,几个案例研究证明了我们的方法在探索复杂和真实世界数据方面的有效性。