Ryu Seunghyong, Lee Hyeongrae, Lee Dong-Kyun, Kim Sung-Wan, Kim Chul-Eung
Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea.
Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea.
Psychiatry Investig. 2019 Aug;16(8):588-593. doi: 10.30773/pi.2019.06.19. Epub 2019 Aug 21.
OBJECTIVE: We aimed to develop predictive models to identify suicide attempters among individuals with suicide ideation using a machine learning algorithm. METHODS: Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 5,773 subjects who reported experiencing suicide ideation and had answered a survey question about suicide attempts. Then, we performed resampling with the Synthetic Minority Over-sampling TEchnique (SMOTE) to obtain data corresponding to 1,324 suicide attempters and 1,330 non-suicide attempters. We randomly assigned the samples to a training set (n=1,858) and a test set (n=796). In the training set, random forest models were trained with features selected through recursive feature elimination with 10-fold cross validation. Subsequently, the fitted model was used to predict suicide attempters in the test set. RESULTS: In the test set, the prediction model achieved very good performance [area under receiver operating characteristic curve (AUC)=0.947] with an accuracy of 88.9%. CONCLUSION: Our results suggest that a machine learning approach can enable the prediction of individuals at high risk of suicide through the integrated analysis of various suicide risk factors.
目的:我们旨在开发预测模型,使用机器学习算法在有自杀意念的个体中识别自杀未遂者。 方法:在韩国国家健康与营养检查调查的35116名19岁以上个体中,我们选择了5773名报告有自杀意念且回答了关于自杀未遂调查问题的受试者。然后,我们使用合成少数过采样技术(SMOTE)进行重采样,以获得对应于1324名自杀未遂者和1330名非自杀未遂者的数据。我们将样本随机分配到训练集(n = 1858)和测试集(n = 796)。在训练集中,使用通过10折交叉验证的递归特征消除选择的特征训练随机森林模型。随后,使用拟合模型预测测试集中的自杀未遂者。 结果:在测试集中,预测模型表现出非常好的性能[受试者操作特征曲线下面积(AUC)= 0.947],准确率为88.9%。 结论:我们的结果表明,机器学习方法可以通过对各种自杀风险因素的综合分析,实现对高自杀风险个体的预测。
Psychiatry Investig. 2019-8
Psychiatry Investig. 2018-11
Health Informatics J. 2021
Crisis. 2018-10-30
J Consult Clin Psychol. 2020-2-27
JMIR Public Health Surveill. 2023-2-20
J Med Internet Res. 2025-6-16
Front Genet. 2022-11-10
Front Neuroinform. 2022-8-11
Eur Psychiatry. 2022-2-15
Psychiatry Investig. 2018-11
BMC Public Health. 2017-6-15
Am J Psychiatry. 2016-11-1
J Child Psychol Psychiatry. 2014-11