Suppr超能文献

三种建模方法研究 HIV-1 蛋白酶抑制剂的定量构效/药代动力学关系。

Quantitative Structure Activity/Pharmacokinetics Relationship Studies of HIV-1 Protease Inhibitors Using Three Modelling Methods.

机构信息

College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.

出版信息

Med Chem. 2021;17(4):396-406. doi: 10.2174/1573406415666190826154505.

Abstract

BACKGROUND

HIV-1 protease inhibitor (PIs) is a good choice for AIDS patients. Nevertheless, for PIs, there are several bugs in clinical application, like drug resistance, the large dose, the high costs and so on, among which, the poor pharmacokinetics property is one of the important reasons that leads to the failure of its clinical application.

OBJECTIVE

We aimed to build computational models for studying the relationship between PIs structure and its pharmacological activities.

METHODS

We collected experimental values of k/K and structures of 50 PIs through a careful literature and database search. Quantitative structure activity/pharmacokinetics relationship (QSAR/QSPR) models were constructed by support vector machine (SVM), partial-least squares regression (PLSR) and back-propagation neural network (BPNN).

RESULTS

For QSAR models, SVM, PLSR and BPNN all generated reliable prediction models with the r of 0.688, 0.768 and 0.787, respectively, and r of 0.748, 0.696 and 0.640, respectively. For QSPR models, the optimum models of SVM, PLSR and BPNN obtained the r of 0.952, 0.869 and 0.960, respectively, and the r of 0.852, 0.628 and 0.814, respectively.

CONCLUSION

Among these three modelling methods, SVM showed superior ability than PLSR and BPNN both in QSAR/QSPR modelling of PIs, thus, we suspected that SVM was more suitable for predicting activities of PIs. In addition, 3D-MoRSE descriptors may have a tight relationship with the Ki values of PIs, and the GETAWAY descriptors have significant influence on both koff and Ki in PLSR equations.

摘要

背景

HIV-1 蛋白酶抑制剂(PI)是艾滋病患者的良好选择。然而,PI 在临床应用中存在一些问题,如耐药性、剂量大、成本高等,其中,药代动力学性质差是导致其临床应用失败的重要原因之一。

目的

旨在建立计算模型,研究 PI 结构与其药理活性之间的关系。

方法

通过仔细的文献和数据库搜索,收集了 50 种 PI 的 k/K 值实验值和结构。通过支持向量机(SVM)、偏最小二乘回归(PLSR)和反向传播神经网络(BPNN)构建了定量构效关系/药代动力学关系(QSAR/QSPR)模型。

结果

对于 QSAR 模型,SVM、PLSR 和 BPNN 分别生成了可靠的预测模型,r 值分别为 0.688、0.768 和 0.787,r 值分别为 0.748、0.696 和 0.640。对于 QSPR 模型,SVM、PLSR 和 BPNN 的最优模型分别得到 r 值为 0.952、0.869 和 0.960,r 值为 0.852、0.628 和 0.814。

结论

在这三种建模方法中,SVM 在 PI 的 QSAR/QSPR 建模中表现出优于 PLSR 和 BPNN 的能力,因此,我们怀疑 SVM 更适合预测 PI 的活性。此外,3D-MoRSE 描述符可能与 PI 的 Ki 值密切相关,而 GETAWAY 描述符对 PLSR 方程中的 koff 和 Ki 都有显著影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验