Small Molecule Pharmaceutics , Genentech, Inc. , One DNA Way , South San Francisco , California 94080 , United States.
Nanopharm Ltd, an Aptar Pharma Company , Cavendish House, Hazell Drive , Newport NP10 8FY , U.K.
Mol Pharm. 2019 Oct 7;16(10):4339-4351. doi: 10.1021/acs.molpharmaceut.9b00692. Epub 2019 Sep 9.
Micronization of crystalline active pharmaceutical ingredients can lead to formation of a thermodynamically unstable material with surface disorder. This material undergoes structural stabilization and particle-level changes over time that, in turn, alters the surface properties and interparticle interactions of the micronized drug. The unstable nature of the micronized drug can lead to variability in the performance of dry powder inhaler drug products. To improve the physicochemical stability of the micronized drug, an annealing step is often introduced. However, there is limited understanding of changes in the micronized drug under different annealing conditions. In this study, we examine the molecular- and particle-level changes occurring in a micronized drug during annealing under varying temperature and humidity conditions using orthogonal techniques. We demonstrate the use of surface free energy (SFE) measured by inverse gas chromatography (IGC) to monitor surface-specific changes. Micronization led to an increase in SFE, which progressively reduced during annealing. SFE trends correlated with the molecular-level surface disorder patterns measured by relative humidity perfusion microcalorimetry. The interparticle interactions tracked using IGC and atomic force microscopy show that as the micronized drug stabilized, there was a transition from dominant drug-drug cohesive forces to drug-lactose adhesive forces. For the nonhygroscopic model compound, combined high temperature-high humidity conditions showed fastest annealing kinetics. Further, the SFE descriptor enabled us to differentiate the extent of mechanical activation of the neat micronized drug and co-micronized drug-magnesium stearate blends. The study identifies tools for characterizing postmicronization material changes that can help develop materials with consistent quality.
药物晶型活性成分的微粉化会导致形成热力学不稳定的物质,其表面无序。随着时间的推移,这种材料会发生结构稳定和颗粒级别的变化,从而改变微粉化药物的表面特性和颗粒间相互作用。微粉化药物的不稳定性会导致干粉吸入剂药物产品的性能出现差异。为了提高微粉化药物的物理化学稳定性,通常会引入退火步骤。然而,对于不同退火条件下微粉化药物的变化,人们的了解有限。在这项研究中,我们使用正交技术研究了在不同温度和湿度条件下退火过程中微粉化药物在分子和颗粒水平上发生的变化。我们展示了使用反气相色谱法(IGC)测量的表面自由能(SFE)来监测表面特定变化。微粉化导致 SFE 增加,在退火过程中逐渐降低。SFE 趋势与相对湿度灌注微量量热法测量的分子水平表面无序模式相关。使用 IGC 和原子力显微镜跟踪的颗粒间相互作用表明,随着微粉化药物的稳定,药物间的内聚力逐渐转变为药物-乳糖的粘附力。对于非吸湿性模型化合物,高温高湿条件显示出最快的退火动力学。此外,SFE 描述符使我们能够区分纯微粉化药物和共微粉化药物-硬脂酸镁混合物的机械活化程度。该研究确定了用于表征微粉化后材料变化的工具,这些工具可以帮助开发具有一致质量的材料。