Gheribi Aïmen E, Poncsák Sándor, Kiss László, Guérard Sébastien, Bilodeau Jean-François, Chartrand Patrice
CRCT-Polytechnique Montréal, P.O. Box 6079, Station Downtown, Montréal, Québec H3C 3A7, Canada.
Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada.
ACS Omega. 2017 May 22;2(5):2224-2230. doi: 10.1021/acsomega.7b00206. eCollection 2017 May 31.
In aluminum electrolysis cells, a ledge of frozen electrolyte is formed on the sides. Controlling the side ledge thickness (a few centimeters) is essential to maintain a reasonable life span of the electrolysis cell, as the ledge acts as a protective layer against chemical attacks from the electrolyte bath used to dissolve alumina. The numerical modeling of the side ledge thickness, by using, for example, finite element analysis, requires some input data on the thermal transport properties of the side ledge. Unfortunately, there is a severe lack of experimental data, in particular, for the main constituent of the side ledge, the cryolite (NaAlF). The aim of this study is twofold. First, the thermal transport properties of cryolite, not available in the literature, were measured experimentally. Second, the experimental data were compared with previous theoretical predictions based on first principle calculations. This was carried out to evaluate the capability of first principle methods in predicting the thermal transport properties of complex insulating materials. The thermal diffusivity of a porous synthetic cryolite sample containing 0.9 wt % of alumina was measured over a wide range of temperature (473-810 K), using the monotone heating method. Because of limited computational resources, the first principle method can be used only to determine the thermal properties of single crystals. The dependence of thermal diffusivity of the NaAlF + 0.9 wt % AlO mixture on the microstructural parameters is discussed. A simple analytical function describing both thermal diffusivity and thermal conductivity of cryolite as a function of temperature is proposed.
在铝电解槽中,侧面会形成一层冻结的电解质结壳。控制侧面结壳的厚度(几厘米)对于维持电解槽合理的使用寿命至关重要,因为该结壳可作为保护层,抵御用于溶解氧化铝的电解质熔池的化学侵蚀。通过例如有限元分析对侧面结壳厚度进行数值模拟,需要一些关于侧面结壳热传输特性的输入数据。不幸的是,严重缺乏实验数据,特别是关于侧面结壳的主要成分冰晶石(NaAlF)的实验数据。本研究有两个目的。第一,对文献中未有的冰晶石的热传输特性进行了实验测量。第二,将实验数据与基于第一性原理计算的先前理论预测进行了比较。这样做是为了评估第一性原理方法预测复杂绝缘材料热传输特性的能力。使用单调加热法,在很宽的温度范围(473 - 810 K)内测量了含有0.9 wt%氧化铝的多孔合成冰晶石样品的热扩散率。由于计算资源有限,第一性原理方法仅可用于确定单晶的热性能。讨论了NaAlF + 0.9 wt% AlO混合物的热扩散率对微观结构参数的依赖性。提出了一个简单的解析函数,将冰晶石的热扩散率和热导率描述为温度的函数。