Rebitski Ediana P, Alcântara Ana C S, Darder Margarita, Cansian Rogério L, Gómez-Hortigüela Luis, Pergher Sibele B C
Laboratório de Peneiras Moleculares-LABPEMOL, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil.
Instituto de Ciencia de Materiales de Madrid and Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain.
ACS Omega. 2018 Oct 18;3(10):13538-13550. doi: 10.1021/acsomega.8b01026. eCollection 2018 Oct 31.
The present work introduces new functional bionanocomposite materials based on layered montmorillonite and fibrous sepiolite clays and two biopolymers (carboxymethylcellulose polysaccharide and zein protein) to produce drug-loaded bionanocomposite films for antibiotic topical delivery. Neomycin, an antibiotic indicated for wound infections, was employed as the model drug in this study. The physical properties and the antimicrobial activity of these materials were evaluated as a function of the type of hybrid and the amount of zein protein incorporated in the bionanocomposite films. In addition, the interfacial and physicochemical properties of these new clay-drug hybrids have been studied through a combination of experimental and computational methodologies, where the computational studies confirm the intercalation of neomycin into the montmorillonite layers and the possible penetration of the drug in the tunnels of sepiolite, as pointed out by N adsorption and X-ray diffraction techniques. The antimicrobial activity of these bionanocomposite materials show that the films based on montmorillonite-neomycin display a more pronounced inhibitory effect of the bacterial growth than those prepared with the sepiolite-neomycin hybrid. Such effect can be related to the difficult release of neomycin adsorbed on sepiolite due to a strong interaction between both components.
本研究基于层状蒙脱石和纤维状海泡石粘土以及两种生物聚合物(羧甲基纤维素多糖和玉米醇溶蛋白)引入了新型功能性生物纳米复合材料,以制备用于抗生素局部递送的载药生物纳米复合膜。新霉素是一种用于伤口感染的抗生素,在本研究中用作模型药物。这些材料的物理性质和抗菌活性作为杂化类型和生物纳米复合膜中玉米醇溶蛋白含量的函数进行了评估。此外,通过实验和计算方法相结合的方式研究了这些新型粘土 - 药物杂化物的界面和物理化学性质,其中计算研究证实了新霉素插入蒙脱石层以及药物可能渗透入海泡石的通道,这正如氮吸附和X射线衍射技术所指出的那样。这些生物纳米复合材料的抗菌活性表明,基于蒙脱石 - 新霉素的膜比用海泡石 - 新霉素杂化体制备的膜对细菌生长具有更明显的抑制作用。这种效应可能与由于两种成分之间的强相互作用导致吸附在海泡石上的新霉素难以释放有关。