Suppr超能文献

研究使用可见及近红外光谱预测牛肉胸腰脊肉的感官和质地属性。

Investigating the use of visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis et lumborum.

机构信息

Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.

School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Meat Sci. 2020 Jan;159:107915. doi: 10.1016/j.meatsci.2019.107915. Epub 2019 Aug 16.

Abstract

The aim of this study was to calibrate chemometric models to predict beef M. longissimus thoracis et lumborum (LTL) sensory and textural values using visible-near infrared (VISNIR) spectroscopy. Spectra were collected on the cut surface of LTL steaks both on-line and off-line. Cooked LTL steaks were analysed by a trained beef sensory panel as well as undergoing WBSF analysis. The best coefficients of determination of cross validation (RCV) in the current study were for textural traits (WBSF = 0.22; stringiness = 0.22; crumbly texture = 0.41: all 3 models calibrated using 48 h post-mortem spectra), and some sensory flavour traits (fatty mouthfeel = 0.23; fatty after-effect = 0.28: both calibrated using 49 h post-mortem spectra). The results of this experiment indicate that VISNIR spectroscopy has potential to predict a range of sensory traits (particularly textural traits) with an acceptable level of accuracy at specific post-mortem times.

摘要

本研究旨在利用可见-近红外(VISNIR)光谱技术对牛肉背最长肌(LTL)的感官和质地值进行化学计量模型校准。在在线和离线条件下对 LTL 牛排的切面采集光谱。对经过烹饪的 LTL 牛排进行训练有素的牛肉感官小组分析以及进行 WBSF 分析。本研究中交叉验证(RCV)的最佳决定系数(RCV)适用于质地特性(WBSF=0.22;纤维状=0.22;易碎质地=0.41:所有 3 个模型均使用死后 48 小时的光谱进行校准)和一些感官风味特性(脂肪口感=0.23;脂肪后效=0.28:均使用死后 49 小时的光谱进行校准)。该实验结果表明,在特定的死后时间内,VISNIR 光谱技术具有预测一系列感官特性(特别是质地特性)的潜力,且具有可接受的准确度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验