Suppr超能文献

藜属(苋科)中 C 型到原 K 型到 C-C 中间型的转变。

Transition from C to proto-Kranz to C-C intermediate type in the genus Chenopodium (Chenopodiaceae).

机构信息

Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.

School of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.

出版信息

J Plant Res. 2019 Nov;132(6):839-855. doi: 10.1007/s10265-019-01135-5. Epub 2019 Aug 31.

Abstract

The Chenopodiaceae is one of the families including C species among eudicots. In this family, the genus Chenopodium is considered to include only C species. However, we report here a transition from C photosynthesis to proto-Kranz to C-C intermediate type in Chenopodium. We investigated leaf anatomical and photosynthetic traits of 15 species, of which 8 species showed non-Kranz anatomy and a CO compensation point (Γ) typical of C plants. However, 5 species showed proto-Kranz anatomy and a C-like Γ, whereas C. strictum showed leaf anatomy and a Γ typical of C-C intermediates. Chenopodium album accessions examined included both proto-Kranz and C-C intermediate types, depending on locality. Glycine decarboxylase, a key photorespiratory enzyme that is involved in the decarboxylation of glycine, was located predominantly in the mesophyll (M) cells of C species, in both M and bundle-sheath (BS) cells in proto-Kranz species, and exclusively in BS cells in C-C intermediate species. The M/BS tissue area ratio, number of chloroplasts and mitochondria per BS cell, distribution of these organelles to the centripetal region of BS cells, the degree of inner positioning (vacuolar side of chloroplasts) of mitochondria in M cells, and the size of BS mitochondria also changed with the change in glycine decarboxylase localization. All Chenopodium species examined were C-like regarding activities and amounts of C and C photosynthetic enzymes and δC values, suggesting that these species perform photosynthesis without contribution of the C cycle. This study demonstrates that Chenopodium is not a C genus and is valuable for studying evolution of C-C intermediates.

摘要

藜科是真双子叶植物中包含 C 种的一个科。在这个科中,Chenopodium 属被认为只包含 C 种。然而,我们在这里报告了 Chenopodium 中从 C 光合作用到原 Kranz 到 C-C 中间型的转变。我们研究了 15 个种的叶片解剖和光合特性,其中 8 个种表现出非 Kranz 解剖结构和典型 C 植物的 CO 补偿点 (Γ)。然而,5 个种表现出原 Kranz 解剖结构和类似 C 的 Γ,而 C. strictum 则表现出典型的 C-C 中间型的叶片解剖结构和 Γ。所研究的 Chenopodium album 品系包括原 Kranz 型和 C-C 中间型,这取决于其产地。甘氨酸脱羧酶是一种关键的光呼吸酶,参与甘氨酸的脱羧作用,它主要位于 C 种的叶肉 (M)细胞中,在原 Kranz 种中位于 M 和束鞘 (BS)细胞中,而在 C-C 中间种中仅位于 BS 细胞中。M/BS 组织面积比、每个 BS 细胞中的叶绿体和线粒体数量、这些细胞器在 BS 细胞向中心区域的分布、M 细胞中线粒体的内定位程度(叶绿体的液泡侧)以及 BS 线粒体的大小也随着甘氨酸脱羧酶定位的变化而变化。所有研究的 Chenopodium 种在 C 和 C 光合作用酶的活性和含量以及 δC 值方面都表现出类似 C 的特性,这表明这些种的光合作用没有 C 循环的贡献。本研究表明,Chenopodium 不是一个 C 属,对于研究 C-C 中间型的进化具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dad/7205854/0fbeffdc6a54/10265_2019_1135_Fig1_HTML.jpg

相似文献

1
Transition from C to proto-Kranz to C-C intermediate type in the genus Chenopodium (Chenopodiaceae).
J Plant Res. 2019 Nov;132(6):839-855. doi: 10.1007/s10265-019-01135-5. Epub 2019 Aug 31.
2
Effects of growth temperature and nitrogen nutrition on expression of C-C intermediate traits in Chenopodium album.
J Plant Res. 2022 Jan;135(1):15-27. doi: 10.1007/s10265-021-01346-9. Epub 2021 Sep 14.
5
Coleataenia prionitis, a C-like species in the Poaceae.
Photosynth Res. 2021 Feb;147(2):211-227. doi: 10.1007/s11120-020-00808-w. Epub 2021 Jan 3.
7
Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae).
J Exp Bot. 2017 Jan;68(2):207-223. doi: 10.1093/jxb/erw432. Epub 2016 Dec 21.
8
Characterization of C₃--C₄ intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity.
Plant Cell Environ. 2011 Oct;34(10):1723-36. doi: 10.1111/j.1365-3040.2011.02367.x. Epub 2011 Jul 5.
9
From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis.
J Exp Bot. 2014 Jul;65(13):3341-56. doi: 10.1093/jxb/eru180. Epub 2014 May 6.

引用本文的文献

4
Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms.
J Exp Bot. 2023 Nov 21;74(21):6631-6649. doi: 10.1093/jxb/erad250.
6
Effects of growth temperature and nitrogen nutrition on expression of C-C intermediate traits in Chenopodium album.
J Plant Res. 2022 Jan;135(1):15-27. doi: 10.1007/s10265-021-01346-9. Epub 2021 Sep 14.
7
Transition From Proto-Kranz-Type Photosynthesis to HCO Use Photosynthesis in the Amphibious Plant .
Front Plant Sci. 2021 Jun 16;12:675507. doi: 10.3389/fpls.2021.675507. eCollection 2021.
10
Russ Monson and the evolution of C photosynthesis.
Oecologia. 2021 Dec;197(4):823-840. doi: 10.1007/s00442-021-04883-1. Epub 2021 Mar 4.

本文引用的文献

1
The evolution of C photosynthesis.
New Phytol. 2004 Feb;161(2):341-370. doi: 10.1111/j.1469-8137.2004.00974.x.
3
Intracellular position of mitochondria in mesophyll cells differs between C and C grasses.
J Plant Res. 2017 Sep;130(5):885-892. doi: 10.1007/s10265-017-0947-z. Epub 2017 Apr 22.
4
C -C intermediates may be of hybrid origin - a reminder.
New Phytol. 2017 Jul;215(1):70-76. doi: 10.1111/nph.14567. Epub 2017 Apr 11.
6
Photosynthesis in C3-C4 intermediate Moricandia species.
J Exp Bot. 2017 Jan;68(2):191-206. doi: 10.1093/jxb/erw391. Epub 2016 Oct 19.
7
Despite phylogenetic effects, C3-C4 lineages bridge the ecological gap to C4 photosynthesis.
J Exp Bot. 2017 Jan;68(2):241-254. doi: 10.1093/jxb/erw451. Epub 2016 Dec 26.
8
Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae).
J Exp Bot. 2017 Jan;68(2):207-223. doi: 10.1093/jxb/erw432. Epub 2016 Dec 21.
10
The Road to C4 Photosynthesis: Evolution of a Complex Trait via Intermediary States.
Plant Cell Physiol. 2016 May;57(5):881-9. doi: 10.1093/pcp/pcw009. Epub 2016 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验