文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单氨基酸变体揭示了塑造全球 SAR11 亚群生物地理学的进化过程。

Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade.

机构信息

Department of Medicine, The University of Chicago, Chicago, United States.

Graduate Program in Biophysical Sciences, University of Chicago, Chicago, United States.

出版信息

Elife. 2019 Sep 3;8:e46497. doi: 10.7554/eLife.46497.


DOI:10.7554/eLife.46497
PMID:31478833
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6721796/
Abstract

Members of the SAR11 order Pelagibacterales dominate the surface oceans. Their extensive diversity challenges emerging operational boundaries defined for microbial 'species' and complicates efforts of population genetics to study their evolution. Here, we employed single-amino acid variants (SAAVs) to investigate ecological and evolutionary forces that maintain the genomic heterogeneity within ubiquitous SAR11 populations we accessed through metagenomic read recruitment using a single isolate genome. Integrating amino acid and protein biochemistry with metagenomics revealed that systematic purifying selection against deleterious variants governs non-synonymous variation among very closely related populations of SAR11. SAAVs partitioned metagenomes into two main groups matching large-scale oceanic current temperatures, and six finer proteotypes that connect distant oceanic regions. These findings suggest that environmentally-mediated selection plays a critical role in the journey of cosmopolitan surface ocean microbial populations, and the idea 'everything is everywhere but the environment selects' has credence even at the finest resolutions.

摘要

SAR11 目浮游杆菌纲的成员主导着海洋表面。它们广泛的多样性挑战了新兴的微生物“种”的操作界限,并使种群遗传学研究其进化的努力复杂化。在这里,我们采用单氨基酸变体(SAAV)来研究维持我们通过使用单个分离株基因组招募宏基因组读数来获取的普遍 SAR11 种群内基因组异质性的生态和进化力量。将氨基酸和蛋白质生物化学与宏基因组学相结合,揭示了系统的纯化选择对有害变体的选择,从而控制了 SAR11 的非常密切相关的种群中的非同义变异。SAAV 将宏基因组分为与大规模海洋洋流温度匹配的两个主要组,以及连接遥远海洋区域的六个更精细的蛋白质型。这些发现表明,环境介导的选择在世界性海洋表面微生物种群的迁徙中起着至关重要的作用,即使在最细微的分辨率下,“一切都在任何地方,但环境选择”的观点也有其可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/7d5e469acbf7/elife-46497-resp-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/d4d6ef78f31a/elife-46497-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/ab23d8cb6098/elife-46497-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/0c530fbb4500/elife-46497-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/003d7b716f46/elife-46497-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/dd25341ced0e/elife-46497-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/c924f7f9ec3a/elife-46497-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/3e01f462151d/elife-46497-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/9339e50621d6/elife-46497-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/333f9d8a0df7/elife-46497-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/f696cfa641b7/elife-46497-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/ec6fcb563b5e/elife-46497-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/7c41abea5864/elife-46497-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/fc867023b00e/elife-46497-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/70021d9bd203/elife-46497-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/a5fc184d55a1/elife-46497-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/e01fa84f6b5c/elife-46497-fig4-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/66dfbbac22bf/elife-46497-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/982b272fb226/elife-46497-resp-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/7d5e469acbf7/elife-46497-resp-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/d4d6ef78f31a/elife-46497-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/ab23d8cb6098/elife-46497-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/0c530fbb4500/elife-46497-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/003d7b716f46/elife-46497-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/dd25341ced0e/elife-46497-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/c924f7f9ec3a/elife-46497-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/3e01f462151d/elife-46497-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/9339e50621d6/elife-46497-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/333f9d8a0df7/elife-46497-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/f696cfa641b7/elife-46497-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/ec6fcb563b5e/elife-46497-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/7c41abea5864/elife-46497-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/fc867023b00e/elife-46497-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/70021d9bd203/elife-46497-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/a5fc184d55a1/elife-46497-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/e01fa84f6b5c/elife-46497-fig4-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/66dfbbac22bf/elife-46497-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/982b272fb226/elife-46497-resp-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec8/6721796/7d5e469acbf7/elife-46497-resp-fig3.jpg

相似文献

[1]
Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade.

Elife. 2019-9-3

[2]
Red Sea SAR11 and Single-Cell Genomes Reflect Globally Distributed Pangenomes.

Appl Environ Microbiol. 2019-6-17

[3]
Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data.

Biol Direct. 2007-11-7

[4]
Are ocean currents too slow to counteract SAR11 evolution? A next-generation sequencing, phylogeographic analysis.

Mol Phylogenet Evol. 2017-2

[5]
Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype.

ISME J. 2014-1-23

[6]
The AEGEAN-169 clade of bacterioplankton is synonymous with SAR11 subclade V (HIMB59) and metabolically distinct.

mSystems. 2023-6-29

[7]
Diversity and abundance of "Pelagibacterales" (SAR11) in the Baltic Sea salinity gradient.

Syst Appl Microbiol. 2014-12

[8]
The Evolutionary Success of the Marine Bacterium SAR11 Analyzed through a Metagenomic Perspective.

mSystems. 2020-10-6

[9]
Ecogenomics of the SAR11 clade.

Environ Microbiol. 2020-5

[10]
Global biogeography of SAR11 marine bacteria.

Mol Syst Biol. 2012-7-17

引用本文的文献

[1]
Bringing the uncultivated microbial majority of freshwater ecosystems into culture.

Nat Commun. 2025-8-26

[2]
Ecophysiology and global dispersal of the freshwater SAR11-IIIb genus Fontibacterium.

Nat Microbiol. 2025-8-15

[3]
Promiscuous and genome-wide recombination underlies the sequence-discrete species of the SAR11 lineage in the deep ocean.

ISME J. 2025-1-2

[4]
Marine phytoplankton impose strong selective pressures on microbiome assembly, but drift is the dominant process.

ISME Commun. 2025-1-6

[5]
Large diversity in the O-chain biosynthetic cluster within populations of Pelagibacterales.

mBio. 2025-3-12

[6]
Extensive paralogism in the environmental pangenome: a key factor in the ecological success of natural SAR11 populations.

Microbiome. 2025-2-4

[7]
Ribosomal protein phylogeography offers quantitative insights into the efficacy of genome-resolved surveys of microbial communities.

bioRxiv. 2025-1-15

[8]
Two decades of bacterial ecology and evolution in a freshwater lake.

Nat Microbiol. 2025-1

[9]
Functional insights of novel Bathyarchaeia reveal metabolic versatility in their role in peatlands of the Peruvian Amazon.

Microbiol Spectr. 2024-11-14

[10]
Modern microbiology: Embracing complexity through integration across scales.

Cell. 2024-9-19

本文引用的文献

[1]
SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter.

Environ Microbiol. 2019-5-21

[2]
Systematics: The Cohesive Nature of Bacterial Species Taxa.

Curr Biol. 2019-3-4

[3]
High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.

Nat Commun. 2018-11-30

[4]
Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient.

ISME J. 2018-11-5

[5]
Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes.

Nat Microbiol. 2018-6-11

[6]
Neutral Theory, Microbial Practice: Challenges in Bacterial Population Genetics.

Mol Biol Evol. 2018-6-1

[7]
Linking pangenomes and metagenomes: the metapangenome.

PeerJ. 2018-1-25

[8]
The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans.

Sci Data. 2018-1-16

[9]
Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations.

ISME J. 2017-12-8

[10]
Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents.

Nat Commun. 2017-10-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索