Suppr超能文献

蜻蜓对视觉运动的差异适应使其能够对光流进行稳健编码。

Differential Tuning to Visual Motion Allows Robust Encoding of Optic Flow in the Dragonfly.

机构信息

University of Adelaide, Adelaide, 5005 South Australia, Australia,

Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden, and.

出版信息

J Neurosci. 2019 Oct 9;39(41):8051-8063. doi: 10.1523/JNEUROSCI.0143-19.2019. Epub 2019 Sep 3.

Abstract

Visual cues provide an important means for aerial creatures to ascertain their self-motion through the environment. In many insects, including flies, moths, and bees, wide-field motion-sensitive neurons in the third optic ganglion are thought to underlie such motion encoding; however, these neurons can only respond robustly over limited speed ranges. The task is more complicated for some species of dragonflies that switch between extended periods of hovering flight and fast-moving pursuit of prey and conspecifics, requiring motion detection over a broad range of velocities. Since little is known about motion processing in these insects, we performed intracellular recordings from hawking, emerald dragonflies () and identified a diverse group of motion-sensitive neurons that we named lobula tangential cells (LTCs). Following prolonged visual stimulation with drifting gratings, we observed significant differences in both temporal and spatial tuning of LTCs. Cluster analysis of these changes confirmed several groups of LTCs with distinctive spatiotemporal tuning. These differences were associated with variation in velocity tuning in response to translated, natural scenes. LTCs with differences in velocity tuning ranges and optima may underlie how a broad range of motion velocities are encoded. In the hawking dragonfly, changes in LTC tuning over time are therefore likely to support their extensive range of behaviors, from hovering to fast-speed pursuits. Understanding how animals navigate the world is an inherently difficult and interesting problem. Insects are useful models for understanding neuronal mechanisms underlying these activities, with neurons that encode wide-field motion previously identified in insects, such as flies, hawkmoths, and butterflies. Like some Dipteran flies, dragonflies exhibit complex aerobatic behaviors, such as hovering, patrolling, and aerial combat. However, dragonflies lack halteres that support such diverse behavior in flies. To understand how dragonflies might address this problem using only visual cues, we recorded from their wide-field motion-sensitive neurons. We found these differ strongly in the ways they respond to sustained motion, allowing them collectively to encode the very broad range of velocities experienced during diverse behavior.

摘要

视觉线索为空中生物确定其在环境中的自身运动提供了重要手段。在许多昆虫中,包括苍蝇、飞蛾和蜜蜂,第三视神经节中的宽场运动敏感神经元被认为是这种运动编码的基础;然而,这些神经元只能在有限的速度范围内产生强烈的反应。对于一些蜻蜓物种来说,任务更加复杂,它们在悬停飞行和快速追逐猎物和同种之间来回切换,需要在广泛的速度范围内进行运动检测。由于对这些昆虫的运动处理知之甚少,我们对鹰蝇、翡翠蜻蜓进行了细胞内记录,并鉴定了一组多样化的运动敏感神经元,我们将其命名为外侧小叶切线细胞 (LTC)。在长时间用漂移光栅进行视觉刺激后,我们观察到 LTC 的时间和空间调谐都有显著差异。对这些变化进行聚类分析证实了 LTC 有几个具有独特时空调谐的组。这些差异与对平移的自然场景的速度调谐反应中的变化有关。具有不同速度调谐范围和最佳值的 LTC 可能是广泛的运动速度编码的基础。在鹰蝇中,LTC 调谐随时间的变化因此可能支持其广泛的行为,从悬停到高速追逐。了解动物如何在世界中导航是一个具有内在难度和趣味性的问题。昆虫是理解这些活动背后神经元机制的有用模型,先前在昆虫(如苍蝇、天蛾和蝴蝶)中已经鉴定出编码宽场运动的神经元。像一些双翅目苍蝇一样,蜻蜓表现出复杂的杂技行为,如悬停、巡逻和空中战斗。然而,蜻蜓没有平衡棒来支持苍蝇的这种多样化行为。为了了解蜻蜓如何仅使用视觉线索来解决这个问题,我们记录了它们的宽场运动敏感神经元。我们发现这些神经元在对持续运动的反应方式上有很大的不同,使它们能够共同编码在各种行为中经历的非常广泛的速度。

相似文献

1
Differential Tuning to Visual Motion Allows Robust Encoding of Optic Flow in the Dragonfly.
J Neurosci. 2019 Oct 9;39(41):8051-8063. doi: 10.1523/JNEUROSCI.0143-19.2019. Epub 2019 Sep 3.
2
Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
J Neurosci. 2018 Dec 12;38(50):10725-10733. doi: 10.1523/JNEUROSCI.1695-18.2018. Epub 2018 Oct 29.
3
Flight activity alters velocity tuning of fly motion-sensitive neurons.
J Neurosci. 2011 Jun 22;31(25):9231-7. doi: 10.1523/JNEUROSCI.1138-11.2011.
4
Temperature modulates the tuning properties of small target motion detector neurons in the dragonfly visual system.
Curr Biol. 2024 Sep 23;34(18):4332-4337.e2. doi: 10.1016/j.cub.2024.08.007. Epub 2024 Sep 3.
5
Capture success and efficiency of dragonflies pursuing different types of prey.
Integr Comp Biol. 2013 Nov;53(5):787-98. doi: 10.1093/icb/ict072. Epub 2013 Jun 19.
6
Visual control of prey-capture flight in dragonflies.
Curr Opin Neurobiol. 2012 Apr;22(2):267-71. doi: 10.1016/j.conb.2011.11.015. Epub 2011 Dec 21.
7
Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.
J Exp Biol. 2007 Sep;210(Pt 18):3277-84. doi: 10.1242/jeb.008425.
8
Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects.
Vision Res. 1997 Dec;37(23):3427-39. doi: 10.1016/s0042-6989(97)00170-3.
9
Velocity constancy and models for wide-field visual motion detection in insects.
Biol Cybern. 2005 Oct;93(4):275-87. doi: 10.1007/s00422-005-0007-y. Epub 2005 Oct 19.
10
Binocular Neuronal Processing of Object Motion in an Arthropod.
J Neurosci. 2018 Aug 1;38(31):6933-6948. doi: 10.1523/JNEUROSCI.3641-17.2018. Epub 2018 Jul 16.

引用本文的文献

1
Paper wasps: A model clade for social cognition.
Curr Opin Neurobiol. 2024 Dec;89:102928. doi: 10.1016/j.conb.2024.102928. Epub 2024 Oct 24.
2
Localized and Long-Lasting Adaptation in Dragonfly Target-Detecting Neurons.
eNeuro. 2024 Sep 20;11(9). doi: 10.1523/ENEURO.0036-24.2024. Print 2024 Sep.
3
Parallel motion vision pathways in the brain of a tropical bee.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul;209(4):563-591. doi: 10.1007/s00359-023-01625-x. Epub 2023 Apr 5.
4
Dragonfly Neurons Selectively Attend to Targets Within Natural Scenes.
Front Cell Neurosci. 2022 Apr 5;16:857071. doi: 10.3389/fncel.2022.857071. eCollection 2022.
5
Populations of local direction-selective cells encode global motion patterns generated by self-motion.
Sci Adv. 2022 Jan 21;8(3):eabi7112. doi: 10.1126/sciadv.abi7112. Epub 2022 Jan 19.
6
Spike bursting in a dragonfly target-detecting neuron.
Sci Rep. 2021 Feb 17;11(1):4005. doi: 10.1038/s41598-021-83559-5.
7
A Target-Detecting Visual Neuron in the Dragonfly Locks on to Selectively Attended Targets.
J Neurosci. 2019 Oct 23;39(43):8497-8509. doi: 10.1523/JNEUROSCI.1431-19.2019. Epub 2019 Sep 13.

本文引用的文献

1
Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila.
Nat Neurosci. 2018 Feb;21(2):250-257. doi: 10.1038/s41593-017-0046-4. Epub 2018 Jan 8.
2
Local motion adaptation enhances the representation of spatial structure at EMD arrays.
PLoS Comput Biol. 2017 Dec 27;13(12):e1005919. doi: 10.1371/journal.pcbi.1005919. eCollection 2017 Dec.
3
The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements.
Curr Biol. 2017 Apr 3;27(7):929-944. doi: 10.1016/j.cub.2017.01.051. Epub 2017 Mar 23.
4
Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.
Curr Biol. 2016 Mar 21;26(6):821-6. doi: 10.1016/j.cub.2016.01.030. Epub 2016 Mar 3.
5
Common circuit design in fly and mammalian motion vision.
Nat Neurosci. 2015 Aug;18(8):1067-76. doi: 10.1038/nn.4050. Epub 2015 Jun 29.
6
Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level.
Front Integr Neurosci. 2015 May 26;9:36. doi: 10.3389/fnint.2015.00036. eCollection 2015.
7
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Front Behav Neurosci. 2014 Sep 24;8:335. doi: 10.3389/fnbeh.2014.00335. eCollection 2014.
8
Contrast sensitivity and the detection of moving patterns and features.
Philos Trans R Soc Lond B Biol Sci. 2014 Jan 6;369(1636):20130043. doi: 10.1098/rstb.2013.0043. Print 2014.
9
Optogenetic control of fly optomotor responses.
J Neurosci. 2013 Aug 21;33(34):13927-34. doi: 10.1523/JNEUROSCI.0340-13.2013.
10
Correlation between OFF and ON channels underlies dark target selectivity in an insect visual system.
J Neurosci. 2013 Aug 7;33(32):13225-32. doi: 10.1523/JNEUROSCI.1277-13.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验