Malola Sami, Nieminen Paavo, Pihlajamäki Antti, Hämäläinen Joonas, Kärkkäinen Tommi, Häkkinen Hannu
Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014, Jyväskylä, Finland.
Faculty of Information Technology, University of Jyväskylä, FI-40014, Jyväskylä, Finland.
Nat Commun. 2019 Sep 3;10(1):3973. doi: 10.1038/s41467-019-12031-w.
Hybrid metal nanoparticles, consisting of a nano-crystalline metal core and a protecting shell of organic ligand molecules, have applications in diverse areas such as biolabeling, catalysis, nanomedicine, and solar energy. Despite a rapidly growing database of experimentally determined atom-precise nanoparticle structures and their properties, there has been no successful, systematic way to predict the atomistic structure of the metal-ligand interface. Here, we devise and validate a general method to predict the structure of the metal-ligand interface of ligand-stabilized gold and silver nanoparticles, based on information about local chemical environments of atoms in experimental data. In addition to predicting realistic interface structures, our method is useful for investigations on the steric effects at the metal-ligand interface, as well as for predicting isomers and intermediate structures induced by thermal dynamics or interactions with the environment. Our method is applicable to other hybrid nanomaterials once a suitable set of reference structures is available.
由纳米晶金属核和有机配体分子保护壳组成的杂化金属纳米粒子在生物标记、催化、纳米医学和太阳能等不同领域有应用。尽管通过实验确定的原子精确纳米粒子结构及其性质的数据库在迅速增长,但尚未有成功、系统的方法来预测金属-配体界面的原子结构。在此,我们基于实验数据中原子的局部化学环境信息,设计并验证了一种预测配体稳定的金和银纳米粒子金属-配体界面结构的通用方法。除了预测实际的界面结构外,我们的方法对于研究金属-配体界面的空间效应以及预测由热动力学或与环境相互作用诱导的异构体和中间结构也很有用。一旦有合适的参考结构集,我们的方法可应用于其他杂化纳米材料。