Suppr超能文献

赖氨酸残基 48(K48)连接的多泛素链选择性靶向氧化蛋白。

Polyubiquitin Chains Linked by Lysine Residue 48 (K48) Selectively Target Oxidized Proteins .

机构信息

Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York.

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

Antioxid Redox Signal. 2019 Nov 20;31(15):1133-1149. doi: 10.1089/ars.2019.7826.

Abstract

Ubiquitin is a highly conserved protein modifier that heavily accumulates during the oxidative stress response. Here, we investigated the role of the ubiquitination system, particularly at the linkage level, in the degradation of oxidized proteins. The function of ubiquitin in the removal of oxidized proteins remains elusive because of the wide range of potential targets and different roles that polyubiquitin chains play. Therefore, we describe in detail the dynamics of the K48 ubiquitin response as the canonical signal for protein degradation. We identified ubiquitin targets and defined the relationship between protein ubiquitination and oxidation during the stress response. Combining oxidized protein isolation, linkage-specific ubiquitination screens, and quantitative proteomics, we found that K48 ubiquitin accumulated at both the early and late phases of the stress response. We further showed that a fraction of oxidized proteins are conjugated with K48 ubiquitin. We identified ∼750 ubiquitinated proteins and ∼400 oxidized proteins that were modified during oxidative stress, and around half of which contain both modifications. These proteins were highly abundant and function in translation and energy metabolism. Our work showed for the first time that K48 ubiquitin modifies a large fraction of oxidized proteins, demonstrating that oxidized proteins can be targeted by the ubiquitin/proteasome system. We suggest that oxidized proteins that rapidly accumulate during stress are subsequently ubiquitinated and degraded during the late phase of the response. This delay between oxidation and ubiquitination may be necessary for reprogramming protein dynamics, restoring proteostasis, and resuming cell growth.

摘要

泛素是一种高度保守的蛋白质修饰物,在氧化应激反应中大量积累。在这里,我们研究了泛素化系统的作用,特别是在连接水平上,在氧化蛋白的降解中的作用。由于潜在目标的广泛范围和多泛素链在不同角色中的作用,泛素在去除氧化蛋白中的功能仍然难以捉摸。因此,我们详细描述了 K48 泛素反应的动态,作为蛋白降解的典型信号。我们确定了泛素的靶标,并定义了应激反应中蛋白泛素化和氧化之间的关系。结合氧化蛋白分离、连接特异性泛素化筛选和定量蛋白质组学,我们发现 K48 泛素在应激反应的早期和晚期都有积累。我们进一步表明,一部分氧化蛋白与 K48 泛素结合。我们鉴定了约 750 个泛素化蛋白和约 400 个氧化蛋白,它们在氧化应激期间被修饰,其中约一半同时含有这两种修饰。这些蛋白丰度很高,功能涉及翻译和能量代谢。我们的工作首次表明,K48 泛素修饰了很大一部分氧化蛋白,表明氧化蛋白可以被泛素/蛋白酶体系统靶向。我们认为,在应激过程中迅速积累的氧化蛋白随后在反应的晚期被泛素化和降解。这种氧化和泛素化之间的延迟可能是重新编程蛋白动力学、恢复蛋白稳态和恢复细胞生长所必需的。

相似文献

1
Polyubiquitin Chains Linked by Lysine Residue 48 (K48) Selectively Target Oxidized Proteins .
Antioxid Redox Signal. 2019 Nov 20;31(15):1133-1149. doi: 10.1089/ars.2019.7826.
2
The K48-K63 Branched Ubiquitin Chain Regulates NF-κB Signaling.
Mol Cell. 2016 Oct 20;64(2):251-266. doi: 10.1016/j.molcel.2016.09.014. Epub 2016 Oct 13.
4
The Ubiquitin Interacting Motif-Like Domain of Met4 Selectively Binds K48 Polyubiquitin Chains.
Mol Cell Proteomics. 2022 Jan;21(1):100175. doi: 10.1016/j.mcpro.2021.100175. Epub 2021 Nov 9.
5
The recognition of ubiquitinated proteins by the proteasome.
Cell Mol Life Sci. 2016 Sep;73(18):3497-506. doi: 10.1007/s00018-016-2255-5. Epub 2016 May 2.
6
Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8434-9. doi: 10.1073/pnas.1407849111. Epub 2014 May 27.
7
Epitope identification of a Lys63 linkage ubiquitin antibody by mass spectrometric epitope excision and extraction approaches.
Eur J Mass Spectrom (Chichester). 2023 Oct;29(5-6):348-358. doi: 10.1177/14690667231199012. Epub 2023 Sep 19.
8
The Crystal Structure and Conformations of an Unbranched Mixed Tri-Ubiquitin Chain Containing K48 and K63 Linkages.
J Mol Biol. 2017 Dec 8;429(24):3801-3813. doi: 10.1016/j.jmb.2017.10.027. Epub 2017 Oct 27.
9
The Proteasome Distinguishes between Heterotypic and Homotypic Lysine-11-Linked Polyubiquitin Chains.
Cell Rep. 2015 Jul 28;12(4):545-53. doi: 10.1016/j.celrep.2015.06.061. Epub 2015 Jul 16.
10
Lysine 63-linked polyubiquitination is required for EGF receptor degradation.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15722-7. doi: 10.1073/pnas.1308014110. Epub 2013 Sep 9.

引用本文的文献

1
SFXN2 contributes mitochondrial dysfunction-induced apoptosis as a substrate of Parkin.
Front Cell Neurosci. 2025 Aug 14;19:1623747. doi: 10.3389/fncel.2025.1623747. eCollection 2025.
2
Context specific ubiquitin modification of ribosomes regulates translation under oxidative stress.
bioRxiv. 2025 Feb 5:2024.05.02.592277. doi: 10.1101/2024.05.02.592277.
3
Proteomic and serologic assessments of responses to mRNA-1273 and BNT162b2 vaccines in human recipient sera.
Front Immunol. 2025 Jan 27;15:1502458. doi: 10.3389/fimmu.2024.1502458. eCollection 2024.
4
Redox regulation of proteostasis.
J Biol Chem. 2024 Dec;300(12):107977. doi: 10.1016/j.jbc.2024.107977. Epub 2024 Nov 8.
5
Mechanisms and regulation of substrate degradation by the 26S proteasome.
Nat Rev Mol Cell Biol. 2025 Feb;26(2):104-122. doi: 10.1038/s41580-024-00778-0. Epub 2024 Oct 3.
6
USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα.
J Exp Clin Cancer Res. 2024 Aug 31;43(1):249. doi: 10.1186/s13046-024-03160-2.
7
Multi-Omics Characterization of E3 Regulatory Patterns in Different Cancer Types.
Int J Mol Sci. 2024 Jul 11;25(14):7639. doi: 10.3390/ijms25147639.
8
Lysine-63-linked polyubiquitination: a principal target of cadmium carcinogenesis.
Toxicol Res. 2024 Apr 21;40(3):349-360. doi: 10.1007/s43188-024-00236-1. eCollection 2024 Jul.
9
Post-translational modification and mitochondrial function in Parkinson's disease.
Front Mol Neurosci. 2024 Jan 11;16:1329554. doi: 10.3389/fnmol.2023.1329554. eCollection 2023.
10
Enzymatic Processing of DNA-Protein Crosslinks.
Genes (Basel). 2024 Jan 10;15(1):85. doi: 10.3390/genes15010085.

本文引用的文献

1
First targeted protein degrader hits the clinic.
Nat Rev Drug Discov. 2019 Mar 6. doi: 10.1038/d41573-019-00043-6.
2
Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress.
J Proteome Res. 2019 Jan 4;18(1):309-318. doi: 10.1021/acs.jproteome.8b00623. Epub 2018 Dec 10.
3
EBprotV2: A Perseus Plugin for Differential Protein Abundance Analysis of Labeling-Based Quantitative Proteomics Data.
J Proteome Res. 2019 Feb 1;18(2):748-752. doi: 10.1021/acs.jproteome.8b00483. Epub 2018 Nov 19.
4
Targeted Protein Degradation: from Chemical Biology to Drug Discovery.
Cell Chem Biol. 2017 Sep 21;24(9):1181-1190. doi: 10.1016/j.chembiol.2017.05.024. Epub 2017 Jun 22.
6
The increasing complexity of the ubiquitin code.
Nat Cell Biol. 2016 May 27;18(6):579-86. doi: 10.1038/ncb3358.
7
2016 update of the PRIDE database and its related tools.
Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56. doi: 10.1093/nar/gkv1145. Epub 2015 Nov 2.
8
K63 polyubiquitination is a new modulator of the oxidative stress response.
Nat Struct Mol Biol. 2015 Feb;22(2):116-23. doi: 10.1038/nsmb.2955. Epub 2015 Jan 26.
9
Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation.
Nat Methods. 2013 Jul;10(7):676-82. doi: 10.1038/nmeth.2519. Epub 2013 Jun 9.
10
Protein damage, repair and proteolysis.
Mol Aspects Med. 2014 Feb;35:1-71. doi: 10.1016/j.mam.2012.09.001. Epub 2012 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验