Suppr超能文献

动态硼簇合物:从理论到实际

Fluxional Boron Clusters: From Theory to Reality.

作者信息

Pan Sudip, Barroso Jorge, Jalife Said, Heine Thomas, Asmis Knut R, Merino Gabriel

机构信息

Departamento de Física Aplicada , Centro de Investigación y de Estudios Avanzados Unidad Mérida , Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex , 97310 Mérida , Yucatán , México.

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China.

出版信息

Acc Chem Res. 2019 Sep 17;52(9):2732-2744. doi: 10.1021/acs.accounts.9b00336. Epub 2019 Sep 5.

Abstract

Isolated boron clusters exhibit many intriguing properties, which have only recently been unfolding with the hand-in-hand advancement of state-of-the-art experimental and theoretical methods for the analyses of their electronic structure, chemical reactivity, and nuclear dynamics. A fascinating property that a number of these clusters display is fluxionality, a dynamical phenomenon associated with the delocalized nature of the chemical bonding and related to the continuous exchange between interatomic neighbors. The electron-deficient nature of boron is the driving force behind its extraordinary ability to form multicenter bonds, and this in turn leads to fluxional behavior only when an appropriate combination of topology and bonding is present. The first instance of fluxionality in boron clusters, the quasi-planar anion B, was reported in 2010. The rotational barrier of the inner B unit spinning within the peripheral B ring can be overcome even at low temperature, mimicking the characteristic motion of a rotary internal combustion engine, and hence, B was entitled a boron-based molecular Wankel engine. Shortly after that, it was found that other quasi-planar boron clusters, like B and B, also exhibit an almost barrier-free rotation of internal planar moieties. The case of the B cation is special because, on the one hand, it was chosen to examine the way to initiate, control, and direct the internal rotation using circularly polarized laser radiation, and on the other hand, the experimental manifestation of fluxionality was first established for this system through infrared experiments. Nevertheless, fluxional behavior is not limited to planar or pure boron clusters. Larger boron clusters, such as the fullerene-analogue borospherenes B and B, are also predicted to show pronounced dynamical behavior that is related to the interconversion between six- and seven-membered rings. BeB, a triple-layer cluster, is another particularly interesting system since it exhibits multifold fluxionality consisting of the revolution of the outer boron ring around the Be core and the spinning of the two Be rings with respect to each other. The essential criteria for dynamical behavior in boron clusters are (1) the absence of a localized two-center, two-electron (2c-2e) bond between two molecular regions that tend to rotate with respect to each other, (2) the absence of steric hindrances for rotation and reorganization, and (3) retention of the delocalized electronic structure throughout the rotation/reorganization process. The fulfillment of the above three conditions ensures that low energy barriers will be associated with the rotation or reorganization of molecular moieties. The first two points can be illustrated from the facts that a single localized C-B σ bond in CB raises the rotational barrier by 27.0 kcal·mol and the expansion of the outer ring by a single boron atom in moving from B to B lowers the rotational barrier by 7.5 kcal·mol. Alternatively, it is also possible to make a rigid boron cluster fluxional through doping, where the geometric and electronic changes caused by a suitable dopant, as in MB (M = Co, Rh, Ir) and BCa, reduce the corresponding rotational barriers enough to achieve fluxionality. At present, there are 13 pure boron clusters (B, B, B, B, B, and B) and eight metal-doped boron clusters (BCa, NiB, [B-Ta@B], BeB, BeB, and MB (M = K, Rb, Cs)) that have sufficiently small rotational barriers (less than ∼1.5 kcal·mol) to exhibit fluxional behavior at low temperature. Some of the other reported boron clusters show more sizable barriers, and their dynamical behavior is manifested only at elevated temperatures. The research on such systems is driven by the notion that it ultimately will pave the way for the development of light-harvesting boron-based nanomotors/machines and robots, a reality that may not be that far away!

摘要

孤立的硼簇展现出许多引人入胜的性质,这些性质直到最近才随着用于分析其电子结构、化学反应性和核动力学的先进实验和理论方法的携手发展而逐渐显现出来。许多这类硼簇所展现出的一个迷人性质是分子内原子重排性,这是一种与化学键的离域性质相关的动力学现象,并且与原子间相邻关系的持续交换有关。硼的缺电子性质是其形成多中心键非凡能力背后的驱动力,而这反过来又仅在存在适当的拓扑结构和键合组合时才导致分子内原子重排行为。硼簇中分子内原子重排性的首个实例——准平面阴离子B,于2010年被报道。即使在低温下,内部B单元在外围B环内旋转的旋转势垒也能被克服,这类似于旋转式内燃机的特征运动,因此,B被称为硼基分子汪克尔发动机。在那之后不久,人们发现其他准平面硼簇,如B和B,也表现出内部平面部分几乎无势垒的旋转。B阳离子的情况很特殊,一方面,它被用于研究使用圆偏振激光辐射引发、控制和引导内部旋转的方法,另一方面,该体系分子内原子重排性的实验表现首先是通过红外实验确定的。然而,分子内原子重排行为并不局限于平面或纯硼簇。更大的硼簇,如富勒烯类似物硼球烯B和B,也预计会表现出与六元环和七元环之间相互转化相关的显著动力学行为。三层簇BeB是另一个特别有趣的体系,因为它表现出多种分子内原子重排性,包括外部硼环围绕Be核的旋转以及两个Be环彼此之间的自旋。硼簇中动力学行为的基本标准是:(1)在倾向于相对旋转的两个分子区域之间不存在局部的双中心、双电子(2c - 2e)键;(2)不存在旋转和重组的空间位阻;(3)在整个旋转/重组过程中保持离域电子结构。满足上述三个条件可确保分子部分的旋转或重组具有低能垒。前两点可以通过以下事实说明:CB中单个局部的C - B σ键使旋转势垒提高了27.0 kcal·mol⁻¹,并且在从B到B的过程中,外环通过单个硼原子的扩展使旋转势垒降低了7.5 kcal·mol⁻¹。或者,通过掺杂也可以使刚性硼簇具有分子内原子重排性,其中合适的掺杂剂(如MB(M = Co、Rh、Ir)和BCa)引起的几何和电子变化会充分降低相应的旋转势垒以实现分子内原子重排性。目前,有13个纯硼簇(B、B、B、B、B和B)以及8个金属掺杂硼簇(BCa、NiB、[B - Ta@B]、BeB、BeB和MB(M = K、Rb、Cs))具有足够小的旋转势垒(小于约1.5 kcal·mol⁻¹),能够在低温下表现出分子内原子重排行为。其他一些报道的硼簇显示出更大的势垒,它们的动力学行为仅在高温下才表现出来。对这类体系的研究是受这样一种观念驱动,即这最终将为基于硼的光捕获纳米马达/机器和机器人的发展铺平道路,这一现实可能并不遥远!

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验