Centre for Vision Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom. Author to whom any correspondence should be addressed.
Phys Med Biol. 2019 Oct 21;64(20):205023. doi: 10.1088/1361-6560/ab41a0.
There are many applications for which sparse, or partial sampling of dynamic image data can be used for articulating or estimating motion within the medical imaging area. In this new work, we propose a generalized framework for dense motion propagation from sparse samples which represents an example of transfer learning and manifold alignment, allowing the transfer of knowledge across imaging sources of different domains which exhibit different features. Many such examples exist in medical imaging, from mapping 2D ultrasound or fluoroscopy to 3D or 4D data or monitoring dynamic dose delivery from partial imaging data in radiotherapy. To illustrate this approach we animate, or articulate, a high resolution static MR image with 4D free breathing respiratory motion derived from low resolution sparse planar samples of motion. In this work we demonstrate that sparse sampling of dynamic MRI may be used as a viable approach to successfully build models of free- breathing respiratory motion by constrained articulation. Such models demonstrate high contrast, and high temporal and spatial resolution that have so far been hitherto unavailable with conventional imaging methods. The articulation is based on using a propagation model, in the eigen domain, to estimate complete 4D motion vector fields from sparsely sampled free-breathing dynamic MRI data. We demonstrate that this approach can provide equivalent motion vector fields compared to fully sampled 4D dynamic data, whilst preserving the corresponding high resolution/high contrast inherent in the original static volume. Validation is performed on three 4D MRI datasets using eight extracted slices from a fast 4D acquisition (0.7 s per volume). The estimated deformation fields from sparse sampling are compared to the fully sampled equivalents, resulting in an rms error of the order of 2 mm across the entire image volume. We also present exemplar 4D high contrast, high resolution articulated volunteer datasets using this methodology. This approach facilitates greater freedom in the acquisition of free breathing respiratory motion sequences which may be used to inform motion modelling methods in a range of imaging modalities and demonstrates that sparse sampling of free breathing data may be used within a manifold alignment and transfer learning paradigm to estimate fully sampled motion. The method may also be applied to other examples of sparse sampling to produce dense motion propagation.
在医学成像领域,稀疏或部分动态图像数据采样可用于阐述或估计运动,因此有许多应用。在这项新工作中,我们提出了一种从稀疏样本中进行密集运动传播的通用框架,这是迁移学习和流形对齐的一个示例,允许在具有不同特征的不同领域的成像源之间转移知识。在医学成像中存在许多这样的例子,从将 2D 超声或透视图像映射到 3D 或 4D 数据,或从放射治疗的部分成像数据监测动态剂量传递。为了说明这种方法,我们使用从低分辨率稀疏平面运动样本中得出的 4D 自由呼吸呼吸运动来对高分辨率静态 MR 图像进行动画处理或表达。在这项工作中,我们证明了稀疏采样的动态 MRI 可作为成功构建自由呼吸呼吸运动模型的可行方法,该模型通过约束运动来构建。这种模型具有高对比度、高时间和空间分辨率,这是传统成像方法迄今为止尚未实现的。该运动表达是基于在特征域中使用传播模型,从稀疏采样的自由呼吸动态 MRI 数据中估计完整的 4D 运动矢量场。我们证明,与完全采样的 4D 动态数据相比,该方法可以提供等效的运动矢量场,同时保持原始静态体积中固有的高分辨率/高对比度。在三个 4D MRI 数据集上使用快速 4D 采集(每个体积 0.7 秒)的八个提取切片进行了验证。稀疏采样的估计变形场与完全采样的变形场进行比较,整个图像体积的均方根误差约为 2 毫米。我们还使用这种方法呈现了示例 4D 高对比度、高分辨率志愿者数据集。该方法促进了在自由呼吸呼吸运动序列采集方面更大的自由度,这些序列可用于在一系列成像模态中为运动建模方法提供信息,并证明了自由呼吸数据的稀疏采样可以在流形对齐和迁移学习范例内用于估计完全采样的运动。该方法也可以应用于其他稀疏采样的例子,以产生密集的运动传播。