Suppr超能文献

视网膜稳定揭示了外界信号对中颞上区航向调谐的有限影响。

Retinal Stabilization Reveals Limited Influence of Extraretinal Signals on Heading Tuning in the Medial Superior Temporal Area.

机构信息

Center for Neuroscience, University of California at Davis, Davis, California 95616

Center for Neuroscience, University of California at Davis, Davis, California 95616.

出版信息

J Neurosci. 2019 Oct 9;39(41):8064-8078. doi: 10.1523/JNEUROSCI.0388-19.2019. Epub 2019 Sep 5.

Abstract

Heading perception in primates depends heavily on visual optic-flow cues. Yet during self-motion, heading percepts remain stable, even though smooth-pursuit eye movements often distort optic flow. According to theoretical work, self-motion can be represented accurately by compensating for these distortions in two ways: via retinal mechanisms or via extraretinal efference-copy signals, which predict the sensory consequences of movement. Psychophysical evidence strongly supports the efference-copy hypothesis, but physiological evidence remains inconclusive. Neurons that signal the true heading direction during pursuit are found in visual areas of monkey cortex, including the dorsal medial superior temporal area (MSTd). Here we measured heading tuning in MSTd using a novel stimulus paradigm, in which we stabilize the optic-flow stimulus on the retina during pursuit. This approach isolates the effects on neuronal heading preferences of extraretinal signals, which remain active while the retinal stimulus is prevented from changing. Our results from 3 female monkeys demonstrate a significant but small influence of extraretinal signals on the preferred heading directions of MSTd neurons. Under our stimulus conditions, which are rich in retinal cues, we find that retinal mechanisms dominate physiological corrections for pursuit eye movements, suggesting that extraretinal cues, such as predictive efference-copy mechanisms, have a limited role under naturalistic conditions. Sensory systems discount stimulation caused by an animal's own behavior. For example, eye movements cause irrelevant retinal signals that could interfere with motion perception. The visual system compensates for such self-generated motion, but how this happens is unclear. Two theoretical possibilities are a purely visual calculation or one using an internal signal of eye movements to compensate for their effects. The latter can be isolated by experimentally stabilizing the image on a moving retina, but this approach has never been adopted to study motion physiology. Using this method, we find that extraretinal signals have little influence on activity in visual cortex, whereas visually based corrections for ongoing eye movements have stronger effects and are likely most important under real-world conditions.

摘要

灵长类动物的头部感知在很大程度上依赖于视觉光流线索。然而,在自身运动过程中,头部感知仍然保持稳定,尽管平滑追随眼球运动常常会扭曲光流。根据理论工作,通过两种方式补偿这些扭曲,可以准确地表示自身运动:通过视网膜机制或通过外视网膜传出副本信号,这些信号预测运动的感觉后果。心理物理学证据强烈支持传出副本假说,但生理学证据仍不确定。在追逐过程中发出真实朝向方向信号的神经元存在于猴皮层的视觉区域,包括背侧中颞上区(MSTd)。在这里,我们使用一种新颖的刺激范式在 MSTd 中测量朝向调谐,在该范式中,我们在追逐过程中使光流刺激在视网膜上稳定下来。这种方法将对外视网膜信号对神经元朝向偏好的影响与视网膜刺激无法改变时仍然活跃的影响隔离开来。我们从 3 只雌性猴子的结果表明,外视网膜信号对 MSTd 神经元的首选朝向方向有显著但较小的影响。在我们的刺激条件下,视网膜线索丰富,我们发现视网膜机制主导了对追逐眼球运动的生理校正,这表明在自然条件下,外视网膜线索(例如预测性传出副本机制)的作用有限。感觉系统会忽略由动物自身行为引起的刺激。例如,眼球运动会导致不相关的视网膜信号,这些信号可能会干扰运动感知。视觉系统会对这种自身产生的运动进行补偿,但具体如何补偿尚不清楚。有两种理论可能性,一种是纯粹的视觉计算,另一种是使用眼球运动的内部信号来补偿其影响。后一种可能性可以通过实验将图像稳定在移动的视网膜上来隔离,但这种方法从未被用于研究运动生理学。使用这种方法,我们发现,外视网膜信号对视觉皮层的活动影响很小,而对正在进行的眼球运动的基于视觉的校正则具有更强的影响,并且在现实世界条件下可能是最重要的。

相似文献

1
Retinal Stabilization Reveals Limited Influence of Extraretinal Signals on Heading Tuning in the Medial Superior Temporal Area.
J Neurosci. 2019 Oct 9;39(41):8064-8078. doi: 10.1523/JNEUROSCI.0388-19.2019. Epub 2019 Sep 5.
2
Pursuit speed compensation in cortical area MSTd.
J Neurophysiol. 2002 Nov;88(5):2630-47. doi: 10.1152/jn.00002.2001.
3
Neurons in Primate Area MSTd Signal Eye Movement Direction Inferred from Dynamic Perspective Cues in Optic Flow.
J Neurosci. 2023 Mar 15;43(11):1888-1904. doi: 10.1523/JNEUROSCI.1885-22.2023. Epub 2023 Feb 1.
4
Influence of gaze rotation on the visual response of primate MSTd neurons.
J Neurophysiol. 1999 Jun;81(6):2764-86. doi: 10.1152/jn.1999.81.6.2764.
6
Direction and speed tuning to visual motion in cortical areas MT and MSTd during smooth pursuit eye movements.
J Neurophysiol. 2011 Apr;105(4):1531-45. doi: 10.1152/jn.00511.2010. Epub 2011 Jan 27.
7
Area MSTd neurons encode visual stimuli in eye coordinates during fixation and pursuit.
J Neurophysiol. 2011 Jan;105(1):60-8. doi: 10.1152/jn.00495.2009. Epub 2010 Oct 27.
8
Translation speed compensation in the dorsal aspect of the medial superior temporal area.
J Neurosci. 2007 Mar 7;27(10):2582-91. doi: 10.1523/JNEUROSCI.3416-06.2007.
9
Evidence for a Causal Contribution of Macaque Vestibular, But Not Intraparietal, Cortex to Heading Perception.
J Neurosci. 2016 Mar 30;36(13):3789-98. doi: 10.1523/JNEUROSCI.2485-15.2016.
10
A neural model of motion processing and visual navigation by cortical area MST.
Cereb Cortex. 1999 Dec;9(8):878-95. doi: 10.1093/cercor/9.8.878.

引用本文的文献

1
Neurons in Primate Area MSTd Signal Eye Movement Direction Inferred from Dynamic Perspective Cues in Optic Flow.
J Neurosci. 2023 Mar 15;43(11):1888-1904. doi: 10.1523/JNEUROSCI.1885-22.2023. Epub 2023 Feb 1.
2
Cortical Motion Perception Emerges from Dimensionality Reduction with Evolved Spike-Timing-Dependent Plasticity Rules.
J Neurosci. 2022 Jul 27;42(30):5882-5898. doi: 10.1523/JNEUROSCI.0384-22.2022. Epub 2022 Jun 22.
3
Retinal optic flow during natural locomotion.
PLoS Comput Biol. 2022 Feb 22;18(2):e1009575. doi: 10.1371/journal.pcbi.1009575. eCollection 2022 Feb.
4
Heading perception depends on time-varying evolution of optic flow.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33161-33169. doi: 10.1073/pnas.2022984117. Epub 2020 Dec 16.

本文引用的文献

2
Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex.
Cereb Cortex. 2017 Jan 1;27(1):330-343. doi: 10.1093/cercor/bhw412.
3
3D Visual Response Properties of MSTd Emerge from an Efficient, Sparse Population Code.
J Neurosci. 2016 Aug 10;36(32):8399-415. doi: 10.1523/JNEUROSCI.0396-16.2016.
4
Joint representation of translational and rotational components of optic flow in parietal cortex.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5077-82. doi: 10.1073/pnas.1604818113. Epub 2016 Apr 19.
6
A novel role for visual perspective cues in the neural computation of depth.
Nat Neurosci. 2015 Jan;18(1):129-37. doi: 10.1038/nn.3889. Epub 2014 Dec 1.
7
Eye-centered representation of optic flow tuning in the ventral intraparietal area.
J Neurosci. 2013 Nov 20;33(47):18574-82. doi: 10.1523/JNEUROSCI.2837-13.2013.
8
Hierarchical processing of complex motion along the primate dorsal visual pathway.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):E972-80. doi: 10.1073/pnas.1115685109. Epub 2012 Jan 31.
9
Area MSTd neurons encode visual stimuli in eye coordinates during fixation and pursuit.
J Neurophysiol. 2011 Jan;105(1):60-8. doi: 10.1152/jn.00495.2009. Epub 2010 Oct 27.
10
Extrastriate area MST and parietal area VIP similarly represent forward headings.
J Neurophysiol. 2010 Jul;104(1):239-47. doi: 10.1152/jn.01083.2009. Epub 2010 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验