Suppr超能文献

二维材料中的氢致高温超导:氢化单层 MgB_{2}为例。

Hydrogen-Induced High-Temperature Superconductivity in Two-Dimensional Materials: The Example of Hydrogenated Monolayer MgB_{2}.

机构信息

Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.

Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden.

出版信息

Phys Rev Lett. 2019 Aug 16;123(7):077001. doi: 10.1103/PhysRevLett.123.077001.

Abstract

Hydrogen-based compounds under ultrahigh pressure, such as the polyhydrides H_{3}S and LaH_{10}, superconduct through the conventional electron-phonon coupling mechanism to attain the record critical temperatures known to date. Here we exploit the intrinsic advantages of hydrogen to strongly enhance phonon-mediated superconductivity in a completely different system, namely, a two-dimensional material with hydrogen adatoms. We find that van Hove singularities in the electronic structure, originating from atomiclike hydrogen states, lead to a strong increase of the electronic density of states at the Fermi level, and thus of the electron-phonon coupling. Additionally, the emergence of high-frequency hydrogen-related phonon modes in this system boosts the electron-phonon coupling further. As a concrete example, we demonstrate the effect of hydrogen adatoms on the superconducting properties of monolayer MgB_{2}, by solving the fully anisotropic Eliashberg equations, in conjunction with a first-principles description of the electronic and vibrational states, and their coupling. We show that hydrogenation leads to a high critical temperature of 67 K, which can be boosted to over 100 K by biaxial tensile strain.

摘要

在超高压下的氢基化合物,如多氢化物 H_{3}S 和 LaH_{10},通过传统的电子-声子耦合机制超导,达到了迄今为止已知的记录临界温度。在这里,我们利用氢的固有优势,在一个完全不同的系统中强烈增强了声子介导的超导性,即具有氢原子的二维材料。我们发现,电子结构中的范霍夫奇点,源自原子状的氢态,导致费米能级处的电子态密度大幅增加,从而增强了电子-声子耦合。此外,在这个系统中出现的高频氢相关声子模式进一步增强了电子-声子耦合。作为一个具体的例子,我们通过求解完全各向异性的 Eliashberg 方程,结合电子和振动状态及其耦合的第一性原理描述,展示了氢原子对单层 MgB_{2}超导性能的影响。我们表明,氢化导致临界温度高达 67 K,通过双轴拉伸应变可提高到 100 K 以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验