Geacintov N E, Shahbaz M, Ibanez V, Moussaoui K, Harvey R G
Chemistry Department, New York University, New York 10003.
Biochemistry. 1988 Nov 1;27(22):8380-7. doi: 10.1021/bi00422a013.
The base-sequence selectivity of the noncovalent binding of (+/-)-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyr ene (BPDE) to a series of synthetic polynucleotides in aqueous solutions (5 mM sodium cacodylate buffer, 20 mM NaCl, pH 7.0, 22 degrees C) was investigated. The magnitude of a red-shifted absorbance at 353 nm, attributed to intercalative complex formation, was utilized to determine values of the association constant Kic. Intercalation in the alternating pyridine-purine polymers poly(dA-dT).(dA-dT) (Kic = 20,000 M-1), poly(dG-dC).(dG-dC) (4200 M-1), and poly(dA-dC).(dG-dT) (9600 M-1) is distinctly favored over intercalation in their nonalternating counterparts poly(dA).(dT) (780 M-1), poly(dG).(dC) (1800 M-1), and poly(dA-dG).(dT-dC) (5400 M-1). Methylation at the 5-position of cytosine gives rise to a significant enhancement of intercalative binding, and Kic is 22,000 M-1 in poly(dG-m5dG).(dG-m5dC). In a number of these polynucleotides, values of Kic for pyrene qualitatively follow those exhibited by BPDE, suggesting that the pyrenyl residue in BPDE is a primary factor in determining the extent of intercalation. Both BPDE and pyrene exhibit a distinct preference for intercalating within dA-dT and dG-m5dC sequences. The catalysis of the chemical reactions of BPDE (hydrolysis to tetrols and covalent adduct formation) is enhanced significantly in the presence of each of the polynucleotides studied, particularly in the dG-containing polymers. A model in which catalysis is mediated by physical complex formation accounts well for the experimentally observed enhancement in reaction rates of BPDE in the alternating polynucleotides; however, in the nonalternating polymers a different or more complex catalysis mechanism may be operative.(ABSTRACT TRUNCATED AT 250 WORDS)
研究了(±)-反式-7,8-二羟基-反-9,10-环氧-7,8,9,10-四氢苯并[a]芘(BPDE)在水溶液(5 mM 二甲胂酸钠缓冲液,20 mM NaCl,pH 7.0,22℃)中与一系列合成多核苷酸的非共价结合的碱基序列选择性。利用归因于插入复合物形成的 353 nm 处红移吸光度的大小来确定缔合常数 Kic 的值。在交替的吡啶-嘌呤聚合物聚(dA-dT)·(dA-dT)(Kic = 20,000 M⁻¹)、聚(dG-dC)·(dG-dC)(4200 M⁻¹)和聚(dA-dC)·(dG-dT)(9600 M⁻¹)中的插入明显优于其非交替对应物聚(dA)·(dT)(780 M⁻¹)、聚(dG)·(dC)(1800 M⁻¹)和聚(dA-dG)·(dT-dC)(5400 M⁻¹)中的插入。胞嘧啶 5 位的甲基化导致插入结合的显著增强,在聚(dG-m5dG)·(dG-m5dC)中 Kic 为 22,000 M⁻¹。在许多这些多核苷酸中,芘的 Kic 值定性地遵循 BPDE 表现出的值,表明 BPDE 中的芘基残基是决定插入程度的主要因素。BPDE 和芘都表现出对插入 dA-dT 和 dG-m5dC 序列的明显偏好。在所研究的每种多核苷酸存在下,BPDE 的化学反应(水解为四醇和形成共价加合物)的催化作用显著增强,特别是在含 dG 的聚合物中。一种催化由物理复合物形成介导的模型很好地解释了实验观察到的交替多核苷酸中 BPDE 反应速率的增强;然而,在非交替聚合物中,可能存在不同的或更复杂催化机制。(摘要截断于 250 字)