文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过分级MoS/SH-MWCNT纳米复合材料从工业矿井水中高效去除Pb(II)和Cd(II)

Efficient Removal of Pb(II) and Cd(II) from Industrial Mine Water by a Hierarchical MoS/SH-MWCNT Nanocomposite.

作者信息

Gusain Rashi, Kumar Neeraj, Fosso-Kankeu Elvis, Ray Suprakas Sinha

机构信息

DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.

Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.

出版信息

ACS Omega. 2019 Aug 14;4(9):13922-13935. doi: 10.1021/acsomega.9b01603. eCollection 2019 Aug 27.


DOI:10.1021/acsomega.9b01603
PMID:31497710
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6714537/
Abstract

In this study, we investigate the adsorption capability of molybdenum sulfide (MoS)/thiol-functionalized multiwalled carbon nanotube (SH-MWCNT) nanocomposite for rapid and efficient removal of heavy metals [Pb(II) and Cd(II)] from industrial mine water. The MoS/SH-MWCNT nanocomposite was synthesized by acid treatment and sulfurization of MWCNTs followed by a facile hydrothermal reaction technique using sodium molybdate and diethyldithiocarbamate as MoS precursors. Morphological and chemical features of the nanocomposite material were studied using various characterization techniques. Furthermore, the effects of adsorbent (MoS/SH-MWCNT nanocomposite) concentration, contact time, initial concentration of heavy-metal ions, and reaction temperature were examined to determine the efficiency of the adsorption process in batch adsorption experiments. Kinetics and isotherm studies showed that the adsorption process followed pseudo-second-order and Freundlich adsorption isotherm models, respectively. Thermodynamic parameters calculated using van't Hoff plots show the spontaneity and endothermic nature of adsorption. MoS/SH-MWCNT nanocomposite demonstrates a high adsorption capacity for Pb(II) (90.0 mg g) and Cd(II) (66.6 mg g) following ion-exchange and electrostatic interactions. Metal-sulfur complex formation was identified as the key contributor for adsorption of heavy-metal ions followed by electrostatic interactions for multilayer adsorption. Transformation of adsorbent into PbMoO S and CdMoO S complex because of the adsorption process was confirmed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectrometry. The spent adsorbent can further be used for photocatalytic and electrochemical applications; therefore, the generated secondary byproducts can also be employed for other purposes.

摘要

在本研究中,我们研究了硫化钼(MoS)/硫醇功能化多壁碳纳米管(SH-MWCNT)纳米复合材料从工业矿井水中快速高效去除重金属[Pb(II)和Cd(II)]的吸附能力。通过对多壁碳纳米管进行酸处理和硫化,然后使用钼酸钠和二乙基二硫代氨基甲酸盐作为MoS前驱体,采用简便的水热反应技术合成了MoS/SH-MWCNT纳米复合材料。使用各种表征技术研究了纳米复合材料的形态和化学特征。此外,在批量吸附实验中,考察了吸附剂(MoS/SH-MWCNT纳米复合材料)浓度、接触时间、重金属离子初始浓度和反应温度对吸附过程效率的影响。动力学和等温线研究表明,吸附过程分别遵循准二级和Freundlich吸附等温线模型。使用范特霍夫图计算的热力学参数表明吸附具有自发性和吸热性质。MoS/SH-MWCNT纳米复合材料通过离子交换和静电相互作用对Pb(II)(90.0 mg/g)和Cd(II)(66.6 mg/g)表现出高吸附容量。金属-硫络合物的形成被确定为重金属离子吸附的关键因素,随后是用于多层吸附的静电相互作用。通过X射线衍射和扫描电子显微镜-能量色散光谱证实了由于吸附过程吸附剂转变为PbMoO₄和CdMoO₄络合物。用过的吸附剂可进一步用于光催化和电化学应用;因此,产生的二次副产物也可用于其他目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/9793365ce6fc/ao9b01603_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/4c9c541fdd60/ao9b01603_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/599a8188d79c/ao9b01603_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/03c9203ce2f7/ao9b01603_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/1349e9766fb4/ao9b01603_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/a8dc8277d650/ao9b01603_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/ef60a64de594/ao9b01603_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/a1ac8b12bb06/ao9b01603_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/3f5c67451c94/ao9b01603_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/bb7fc8562a91/ao9b01603_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/7e8eb1082bb3/ao9b01603_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/d38a32896e15/ao9b01603_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/9793365ce6fc/ao9b01603_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/4c9c541fdd60/ao9b01603_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/599a8188d79c/ao9b01603_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/03c9203ce2f7/ao9b01603_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/1349e9766fb4/ao9b01603_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/a8dc8277d650/ao9b01603_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/ef60a64de594/ao9b01603_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/a1ac8b12bb06/ao9b01603_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/3f5c67451c94/ao9b01603_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/bb7fc8562a91/ao9b01603_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/7e8eb1082bb3/ao9b01603_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/d38a32896e15/ao9b01603_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d012/6714537/9793365ce6fc/ao9b01603_0012.jpg

相似文献

[1]
Efficient Removal of Pb(II) and Cd(II) from Industrial Mine Water by a Hierarchical MoS/SH-MWCNT Nanocomposite.

ACS Omega. 2019-8-14

[2]
Water-soluble carboxymethyl chitosan (WSCC)-modified single-walled carbon nanotubes (SWCNTs) provide efficient adsorption of Pb(ii) from water.

RSC Adv. 2022-3-1

[3]
Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution.

Chemosphere. 2020-5-6

[4]
Simultaneous removal of Pb(II), Cd(II) and bacteria from aqueous solution using amino-functionalized FeO/NaP zeolite nanocomposite.

Environ Technol. 2018-6-18

[5]
Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies.

Environ Pollut. 2019-5-31

[6]
Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

J Environ Sci (China). 2016-3-7

[7]
Achieving Controllable MoS Nanostructures with Increased Interlayer Spacing for Efficient Removal of Pb(II) from Aquatic Systems.

ACS Appl Mater Interfaces. 2019-5-29

[8]
The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions.

J Hazard Mater. 2016-3-26

[9]
Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.

J Environ Health Sci Eng. 2016-11-9

[10]
Preparation and characterization of CS/PAT/ MWCNT@MgAl-LDHs nanocomposite for Cd removal and 4-nitrophenol reduction.

J Environ Health Sci Eng. 2024-1-18

引用本文的文献

[1]
Fabrication of a novel magnetic carbon nanotube coated with polydopamine modified with EDTA for removing Cd and Pb ions from an aqueous solution.

Heliyon. 2024-10-2

[2]
Synthesis, characterization and application of steel waste-based iron oxide nanoparticles for removal of heavy metals from industrial wastewaters.

Heliyon. 2024-3-15

[3]
Highly Efficient Adsorption of Pb(II) by Functionalized Humic Acid: Molecular Experiment and Theoretical Calculation.

Materials (Basel). 2023-11-23

[4]
Biosorption of Pb(II) Using Natural and Treated K. Leaves: Simulation Framework Extended through the Application of Artificial Neural Network and Genetic Algorithm.

Molecules. 2023-8-31

[5]
Removal of arsenic with functionalized multi-walled carbon nanotubes (MWCNTs-COOH) using the magnetic method (FeO) from aqueous solutions.

RSC Adv. 2023-8-23

[6]
Preparation of MoO/MoS composite for enhanced photoelectrocatalytic removal of antimony from petrochemical wastewaters.

Turk J Chem. 2022-7-21

[7]
Synthesis of Chemically Modified Acid-Functionalized Multiwall Carbon Nanotubes with Benzimidazole for Removal of Lead and Cadmium Ions from Wastewater.

Polymers (Basel). 2023-3-13

[8]
Carbon and zeolite-based composites for radionuclide and heavy metal sorption.

Heliyon. 2022-12-10

[9]
Novel strategies and advancement in reducing heavy metals from the contaminated environment.

Arch Microbiol. 2022-7-13

[10]
Water-soluble carboxymethyl chitosan (WSCC)-modified single-walled carbon nanotubes (SWCNTs) provide efficient adsorption of Pb(ii) from water.

RSC Adv. 2022-3-1

本文引用的文献

[1]
Accumulation of Heavy Metals from Battery Waste in Topsoil, Surface Water, and Garden Grown Maize at Omilende Area, Olodo, Nigeria.

Glob Chall. 2018-2-5

[2]
Achieving Controllable MoS Nanostructures with Increased Interlayer Spacing for Efficient Removal of Pb(II) from Aquatic Systems.

ACS Appl Mater Interfaces. 2019-5-29

[3]
Three-dimensional porous graphene oxide-maize amylopectin composites with controllable pore-sizes and good adsorption-desorption properties: Facile fabrication and reutilization, and the adsorption mechanism.

Ecotoxicol Environ Saf. 2019-3-22

[4]
Lignin xanthate resin-bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water.

J Hazard Mater. 2019-1-11

[5]
Sustainable technologies for water purification from heavy metals: review and analysis.

Chem Soc Rev. 2019-1-3

[6]
Solution-processable 2D semiconductors for high-performance large-area electronics.

Nature. 2018-10

[7]
Potential Toxicity of Dissolved Metal Mixtures (Cd, Cu, Pb, Zn) to Early Life Stage White Sturgeon ( Acipenser transmontanus) in the Upper Columbia River, Washington, United States.

Environ Sci Technol. 2018-8-17

[8]
Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

ACS Cent Sci. 2018-3-28

[9]
Modifier-Free Microfluidic Electrochemical Sensor for Heavy-Metal Detection.

ACS Omega. 2017-8-31

[10]
Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review.

Sci Total Environ. 2017-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索