Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India.
Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India.
J Biomol Struct Dyn. 2020 Aug;38(13):3838-3855. doi: 10.1080/07391102.2019.1664331. Epub 2019 Oct 8.
Understanding the DNA-ligand interaction mechanism is of utmost importance to design selective inhibitors targeting the GC- and AT-rich DNA. This forms a primary strategy to block the association of transcription factors to promoters and subsequently, reduce the expression of genes. We present here an integrated approach combining various docking scoring functions, selective ligand-based pharmacophore models, molecular dynamics simulations and binding free energy calculations to prioritize natural compounds specific to GC minor groove binding. The approach initially applies a selective ligand-based pharmacophore model built upon known GC minor groove binders to identify potential GC minor groove binders from natural compound repositories. These GC minor groove binders were then cross-examined with selective pharmacophore models (controls) based on AT-rich binders and GC intercalators to assess its unfitness. This approach involves the calculation of binding energies of known GC- and AT minor groove binders using three scoring functions without any constraint on groove specificity of GC- and AT-rich DNA. The evaluation of empirical scoring functions led to enumeration of a new parameter, the energy difference computed using Glide (sensitivity = 80%) to recognize GC-rich binders effectively. Molecular dynamics simulations and binding free energy calculations (MM/GBSA) constituted the final phase of this approach to analyze the interactions of natural molecules (hits) with GC-rich DNA comprehensively. Seven natural molecules were selected which exhibited fewer fluctuations in RMSD and RMSF profiles and better GC-rich DNA binding with low free energies of binding. These natural hits prioritized by this integrated approach can be tested in DNA binding assay.Communicated by Ramaswamy H. Sarma.
理解 DNA-配体相互作用机制对于设计针对 GC 和 AT 丰富 DNA 的选择性抑制剂至关重要。这是阻止转录因子与启动子结合并随后降低基因表达的主要策略。我们在这里提出了一种综合方法,结合了各种对接评分函数、选择性基于配体的药效团模型、分子动力学模拟和结合自由能计算,以优先考虑针对 GC 小沟结合的天然化合物。该方法最初应用基于已知 GC 小沟结合物构建的选择性基于配体的药效团模型,从天然化合物库中识别潜在的 GC 小沟结合物。然后,将这些 GC 小沟结合物与基于 AT 丰富结合物和 GC 嵌入剂的选择性药效团模型(对照)交叉检查,以评估其不适合性。该方法涉及使用三种评分函数计算已知 GC 和 AT 小沟结合物的结合能,而无需对 GC 和 AT 丰富 DNA 的沟特异性施加任何限制。对经验评分函数的评估导致了一个新参数的枚举,即使用 Glide 计算的能量差(灵敏度为 80%),以有效地识别 GC 丰富的结合物。分子动力学模拟和结合自由能计算(MM/GBSA)构成了该方法的最后阶段,用于全面分析天然分子(命中)与 GC 丰富 DNA 的相互作用。选择了七种天然分子,它们在 RMSD 和 RMSF 谱中的波动较小,与 GC 丰富 DNA 的结合自由能较低。这些通过综合方法优先排序的天然命中物可以在 DNA 结合测定中进行测试。由 Ramaswamy H. Sarma 传达。