Suppr超能文献

背景抑制磁化传递磁共振成像。

Background suppressed magnetization transfer MRI.

机构信息

Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.

出版信息

Magn Reson Med. 2020 Mar;83(3):883-891. doi: 10.1002/mrm.27978. Epub 2019 Sep 10.

Abstract

PURPOSE

Up to 30% of the hydrogen atoms in brain tissue are part of molecules ("semisolids") other than water. In MRI, their magnetization is typically not observed directly, but can influence the water magnetization through magnetization transfer (MT). Comparison of MRI scans differentially sensitized to MT allows estimation of the semisolid fraction and potential changes with disease. Here, we present an approach designed to improve this estimate by measuring the size of the MT effect in a single scan.

METHODS

A stimulated echo sequence was used to generate a spatial pattern in the longitudinal water magnetization, which was then given time to exchange with semisolids. After saturating the remaining water magnetization, reverse exchange was allowed to partly re-establish the original water magnetization pattern. The third excitation pulse then formed a stimulated echo out of this pattern.

RESULTS

MT data were obtained on 10 human subjects at 7 T with varying exchange times. The images showed the expected time dependence of signal associated with the forward and reverse exchange processes. Excellent suppression of non-exchanging background signal was achieved. As expected, this suppression came at the price of a substantial reduction in exchange-related signal (by ~75% compared to the signal in saturation recovery MT), in part because of the reliance on a 2-step exchange process.

CONCLUSION

The results demonstrate an MT signal can be observed in a single acquisition without subtraction. This may be advantageous for MT measurements when signal instabilities related to motion and physiological variations exceed thermal noise sources.

摘要

目的

脑组织中多达 30%的氢原子是水以外的分子(“半固体”)的一部分。在 MRI 中,它们的磁化通常不是直接观察到的,但可以通过磁化转移(MT)影响水的磁化。比较对 MT 具有不同敏感性的 MRI 扫描,可以估计半固体分数,并潜在地随着疾病而变化。在这里,我们提出了一种方法,旨在通过在单次扫描中测量 MT 效应的大小来提高这种估计。

方法

使用受激回波序列在纵向水磁化中产生空间图案,然后让其有时间与半固体交换。饱和剩余的水磁化后,允许反向交换部分重建原始水磁化图案。然后,第三个激发脉冲从该图案中形成受激回波。

结果

在 7T 下,对 10 名人类受试者进行了不同交换时间的 MT 数据采集。图像显示了与正向和反向交换过程相关的信号的预期时间依赖性。出色地抑制了非交换背景信号。如预期的那样,这种抑制是以交换相关信号的大幅减少为代价的(与饱和恢复 MT 中的信号相比,减少了约 75%),部分原因是依赖于两步交换过程。

结论

结果表明,可以在单次采集而无需减法的情况下观察到 MT 信号。当与运动和生理变化相关的信号不稳定性超过热噪声源时,这对于 MT 测量可能是有利的。

相似文献

1
Background suppressed magnetization transfer MRI.
Magn Reson Med. 2020 Mar;83(3):883-891. doi: 10.1002/mrm.27978. Epub 2019 Sep 10.
2
Shuffled magnetization-prepared multicontrast rapid gradient-echo imaging.
Magn Reson Med. 2018 Jan;79(1):62-70. doi: 10.1002/mrm.26986. Epub 2017 Oct 27.
3
Analysis of magnetization transfer (MT) influence on quantitative mapping of T relaxation time.
Magn Reson Med. 2019 Jul;82(1):145-158. doi: 10.1002/mrm.27704. Epub 2019 Mar 12.
4
Extended phase graph formalism for systems with magnetization transfer and exchange.
Magn Reson Med. 2018 Aug;80(2):767-779. doi: 10.1002/mrm.27040. Epub 2017 Dec 15.
5
Fast high-resolution brain imaging with balanced SSFP: Interpretation of quantitative magnetization transfer towards simple MTR.
Neuroimage. 2012 Jan 2;59(1):202-11. doi: 10.1016/j.neuroimage.2011.07.038. Epub 2011 Jul 23.
6
Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.
Z Med Phys. 2025 Feb;35(1):78-86. doi: 10.1016/j.zemedi.2024.12.001. Epub 2025 Jan 17.
7
Non-invasive MRI measurements of age-dependent in vivo human glymphatic exchange using magnetization transfer spin labeling.
Neuroimage. 2025 Apr 15;310:121142. doi: 10.1016/j.neuroimage.2025.121142. Epub 2025 Mar 13.
9
White matter intercompartmental water exchange rates determined from detailed modeling of the myelin sheath.
Magn Reson Med. 2019 Jan;81(1):628-638. doi: 10.1002/mrm.27398. Epub 2018 Sep 19.
10
Steady-state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses.
Magn Reson Med. 2020 Mar;83(3):935-949. doi: 10.1002/mrm.27984. Epub 2019 Sep 19.

引用本文的文献

1
Application of advanced magnetic resonance imaging in glaucoma: a narrative review.
Quant Imaging Med Surg. 2022 Mar;12(3):2106-2128. doi: 10.21037/qims-21-790.

本文引用的文献

1
CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena.
Magn Reson Med. 2018 Oct;80(4):1320-1340. doi: 10.1002/mrm.27341. Epub 2018 May 30.
2
Long-Term Magnetization Transfer Ratio Evolution in Multiple Sclerosis White Matter Lesions.
J Neuroimaging. 2018 Mar;28(2):191-198. doi: 10.1111/jon.12480. Epub 2017 Oct 27.
3
Rapid measurement of brain macromolecular proton fraction with transient saturation transfer MRI.
Magn Reson Med. 2017 Jun;77(6):2174-2185. doi: 10.1002/mrm.26304. Epub 2016 Jun 25.
4
Effects of magnetization transfer on T1 contrast in human brain white matter.
Neuroimage. 2016 Mar;128:85-95. doi: 10.1016/j.neuroimage.2015.12.032. Epub 2015 Dec 24.
5
Imaging with positive T1-contrast using superstimulated echoes.
Magn Reson Med. 2012 Oct;68(4):1157-65. doi: 10.1002/mrm.24111. Epub 2011 Dec 21.
6
Quantitative magnetization transfer imaging in human brain at 3 T via selective inversion recovery.
Magn Reson Med. 2011 Nov;66(5):1346-52. doi: 10.1002/mrm.22928. Epub 2011 May 23.
9
MR relaxation in multiple sclerosis.
Neuroimaging Clin N Am. 2009 Feb;19(1):1-26. doi: 10.1016/j.nic.2008.09.007.
10
Magnetization transfer imaging in multiple sclerosis.
J Neuroimaging. 2005;15(4 Suppl):58S-67S. doi: 10.1177/1051228405282242.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验