Suppr超能文献

使用硫酸二甲酯探究单个mRNA 3'异构体的体内结构

Probing In Vivo Structure of Individual mRNA 3' Isoforms Using Dimethyl Sulfate.

作者信息

Moqtaderi Zarmik, Geisberg Joseph V

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.

出版信息

Curr Protoc Mol Biol. 2019 Sep;128(1):e99. doi: 10.1002/cpmb.99.

Abstract

The DMS region extraction and deep sequencing (DREADS) procedure was designed to probe RNA structure in vivo and to link this structural information to specific 3' isoforms. Growing cells are treated with the alkylating agent dimethyl sulfate (DMS), which enters easily into cells and modifies RNA molecules at solvent-exposed A and C residues. RNA is isolated, and sequencing libraries are constructed in a manner that preserves the identities of individual mRNA isoforms arising from alternative cleavage/polyadenylation sites. During the cDNA synthesis step of library construction, the progress of reverse transcriptase (RT) is blocked when it encounters a DMS modification on the RNA, leading to disproportionate cDNA termination adjacent to DMS-modified positions. After paired-end deep sequencing, the downstream end of each sequenced fragment is mapped to a specific cleavage/poly(A) site representing an individual mRNA 3' isoform. The upstream mapped end of the sequenced fragment defines where the RT reaction stopped. Over the population of all sequenced fragments derived from a particular isoform, A and C positions that are overrepresented next to the upstream endpoints in the DMS sample (relative to a parallel untreated control) are inferred to have been DMS modified, and hence solvent exposed. This method thus allows in vivo structural information obtained using DMS to be linked to individual mRNA 3' isoforms. © 2019 by John Wiley & Sons, Inc.

摘要

DMS区域提取与深度测序(DREADS)程序旨在探测体内RNA结构,并将这种结构信息与特定的3'异构体联系起来。培养的细胞用烷基化剂硫酸二甲酯(DMS)处理,DMS可轻松进入细胞并修饰溶剂暴露的A和C残基处的RNA分子。分离RNA,并以保留由可变切割/聚腺苷酸化位点产生的各个mRNA异构体身份的方式构建测序文库。在文库构建的cDNA合成步骤中,逆转录酶(RT)遇到RNA上的DMS修饰时,其进程会受阻,导致在DMS修饰位点附近的cDNA终止不成比例。进行双端深度测序后,每个测序片段的下游末端被定位到代表单个mRNA 3'异构体的特定切割/聚(A)位点。测序片段的上游定位末端确定了RT反应停止的位置。在源自特定异构体的所有测序片段群体中,DMS样本中上游端点旁边A和C位置的过度富集(相对于平行未处理对照)被推断为已被DMS修饰,因此是溶剂暴露的。因此,这种方法允许将使用DMS获得的体内结构信息与单个mRNA 3'异构体联系起来。© 2019约翰威立国际出版公司。

相似文献

1
Probing In Vivo Structure of Individual mRNA 3' Isoforms Using Dimethyl Sulfate.
Curr Protoc Mol Biol. 2019 Sep;128(1):e99. doi: 10.1002/cpmb.99.
2
Extensive Structural Differences of Closely Related 3' mRNA Isoforms: Links to Pab1 Binding and mRNA Stability.
Mol Cell. 2018 Dec 6;72(5):849-861.e6. doi: 10.1016/j.molcel.2018.08.044. Epub 2018 Oct 11.
3
Isoform-specific RNA structure determination using Nano-DMS-MaP.
Nat Protoc. 2024 Jun;19(6):1835-1865. doi: 10.1038/s41596-024-00959-3. Epub 2024 Feb 12.
4
DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.
Nat Methods. 2017 Jan;14(1):75-82. doi: 10.1038/nmeth.4057. Epub 2016 Nov 7.
5
Viral RNA structure analysis using DMS-MaPseq.
Methods. 2020 Nov 1;183:68-75. doi: 10.1016/j.ymeth.2020.04.001. Epub 2020 Apr 3.
6
DMS-seq for In Vivo Genome-Wide Mapping of Protein-DNA Interactions and Nucleosome Centers.
Curr Protoc Mol Biol. 2018 Jul;123(1):e60. doi: 10.1002/cpmb.60. Epub 2018 Jun 15.
7
In Vivo RNA Structure Probing with DMS-MaPseq.
Methods Mol Biol. 2022;2404:299-310. doi: 10.1007/978-1-0716-1851-6_16.
8
Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis.
Methods. 2019 Feb 15;155:30-40. doi: 10.1016/j.ymeth.2018.11.018. Epub 2018 Nov 29.
9
Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.
Nature. 2014 Jan 30;505(7485):701-5. doi: 10.1038/nature12894. Epub 2013 Dec 15.

本文引用的文献

1
Extensive Structural Differences of Closely Related 3' mRNA Isoforms: Links to Pab1 Binding and mRNA Stability.
Mol Cell. 2018 Dec 6;72(5):849-861.e6. doi: 10.1016/j.molcel.2018.08.044. Epub 2018 Oct 11.
2
Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.
Mol Cell. 2018 Jun 7;70(5):854-867.e9. doi: 10.1016/j.molcel.2018.05.001.
3
Widespread Influence of 3'-End Structures on Mammalian mRNA Processing and Stability.
Cell. 2017 May 18;169(5):905-917.e11. doi: 10.1016/j.cell.2017.04.036.
4
DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.
Nat Methods. 2017 Jan;14(1):75-82. doi: 10.1038/nmeth.4057. Epub 2016 Nov 7.
5
Alternative polyadenylation of mRNA precursors.
Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30. doi: 10.1038/nrm.2016.116. Epub 2016 Sep 28.
6
Genome-Wide Analysis of RNA Secondary Structure.
Annu Rev Genet. 2016 Nov 23;50:235-266. doi: 10.1146/annurev-genet-120215-035034. Epub 2016 Sep 14.
8
Tunable protein synthesis by transcript isoforms in human cells.
Elife. 2016 Jan 6;5:e10921. doi: 10.7554/eLife.10921.
9
The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs.
Nat Commun. 2015 Dec 3;6:10127. doi: 10.1038/ncomms10127.
10
Progress and challenges for chemical probing of RNA structure inside living cells.
Nat Chem Biol. 2015 Dec;11(12):933-41. doi: 10.1038/nchembio.1958. Epub 2015 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验